Что такое анод и катод

Прямое подключение диода

Подключим источник постоянного тока к противоположным выводам диода. То есть плюс источника тока присоединить к p-стороне диода. Минус источника питания к n-стороне. Ситуация изменится. Предположим, что источник тока имеет напряжение достаточное для того, чтобы преодолеть потенциальный барьер. После этого электроны и дырки будут как бы притягиваться к питающим клеммам источника тока. На противоположные стороны диода. Когда электроны пересекают барьер, то теряют энергию и заменяют дырки в акцепторной области. Дырки напротив перемещаются в донорную область и там замещаются электронами. Свободных носителей много. Обедненной области нет. Потенциальный барьер практически исчезает. Сопротивление пограничного участка становится очень маленьким. Ток повышается. Данное явление называется прямым смещением диода. Или же прямое включение диода.

Прямое подключение диода

Давайте будем изменять входное напряжение и посмотрим как это скажется на диоде. При напряжении обратного подключения через диод будет течь электрический ток небольшой силы. В условиях прямого подключения до 0,7 вольта, мы также будем наблюдать только незначительный электрический ток. Но сразу же после повышения напряжения до значений достаточных для преодоления потенциального барьера мы увидим резкое увеличение тока.

Если приложить к диоду очень высокое напряжение при обратном подключении, то это повредит обычные диоды. При повреждении диоды ведут себя различно. К примеру, они могут начать хорошо проводить ток в обоих направлениях. Или же почти перестают проводить ток в обе стороны. Иногда, при определенных обстоятельствах, поврежденные диоды могут даже самовосстанавливаться .

Диод — анод (плюс) и катод (минус)

Диод — полупроводниковый прибор с односторонней проводимостью. То есть, диод работает как клапан одностороннего действия для электрического тока. Это позволяет использовать диоды разными интересными способами. Например, в выпрямительном мосте, для выпрямления переменного тока. Выпрямительный диодный мост — это устройство из четырех диодов. Диоды располагаются в схеме определенным образом.

Диодный выпрямительный мост — положительный полупериод

С одной стороны к диодному мосту подключается источник переменного тока. С другой стороны к нему подключается нагрузка, требующая питания током постоянным. Как известно, переменный ток частотой 50 Герц 100 раз в секунду меняет свое направление течения. Во время положительного полупериода он течет в одном направлении. И в это время проходимость в цепи будет такой как показано на схеме. Ток будет проходить по двум диодам находящимся в положении прямого смещения. Два других диода будут находиться в состоянии обратного смещения.

Диодный выпрямительный мост — отрицательный полупериод

Во время отрицательного полупериода произойдет обратное. Таким образом мы получим ток такого же направления на выходе. В результате, через нагрузку в любом случае ток будет течь только в одном направлении. То есть мы получим выпрямленный пульсирующий ток. Мы можем обеспечить еще большее выпрямление на выходе добавив емкостный фильтр и регулятор напряжения.

Существует очень большое количество различных видов диодов. Мы постараемся рассмотреть все случаи их применения на практике. А также исключения из правил. И другие интересные подробности.

Для вашего удобства подборка похожих публикаций

Спасибо за посещение канала и чтение заметки

Вы можете подписаться на канал и поставить лайк. Если хотите больше похожих материалов в ленте Яндекс Дзен

Обозначение в электрохимии и цветной металлургии

Катод — определение и практическое применение

Понятие анодов в электролитических процессах применимо в отношении положительно заряженных электродов. Электролиз, с помощью которого выделяются или очищаются различные химические элементы, – это влияние электрического тока на электролит. Электролитом выступают растворы солей или кислот. Другим электродом, участвующим в этой реакции, выступает катод.

Внимание! На отрицательно заряженном катоде (К) осуществляется реакция восстановления, на аноде (А) – процесс окисления. При этом «А» может частично разрушаться, участвуя в очищении металлов от нежелательных добавок

В металлургической промышленности аноды используют при нанесении защитных слоёв на продукт электрохимическим методом (гальваника) или электро-рафинированием. Электрическое очищение позволяет растворять на «А» черновой металл (с примесями) и осаждать его на «К» уже в очищенном виде.

Ряд часто применяемых анодов – изготовленные из металлов:

  • цинка;
  • меди;
  • никеля;
  • кадмия;
  • свинцовые (сплав свинца с сурьмой);
  • серебра;
  • золота;
  • платины.

Никелирование, оцинкование и прочее нанесение защитных или эстетически востребованных покрытий на изделия выполняются в основном из недрагоценных металлов.

С помощью «А» из драгметаллов повышают электропроводность компонентов электрических изделий и наносят слои благородных металлов на ювелирные украшения.

К сведению. Осаждаемый на катоде чистый металл также называют «катодом». Например, чистая медь полученная таким образом именуется «медный катод». Дальше её используют для изготовления медной фольги, проволоки и прочего.

Рафинирование металлов

Применение

Электроды в качестве анода и катода наиболее часто применяются:

  • в электрохимии;
  • вакуумных электронных приборах;
  • полупроводниковых элементах.

Рассмотрим в общих чертах сферы применения анодов и катодов.

В электрохимии

В данной сфере анод и катод являются ключевыми понятиями, в процессе прохождения электрохимических реакций, используемых в основном для восстановления металлов. Такие реакции называют электролизом. Использование процессов электролиза позволяет получать чистые металлы, так как на катоде образуются атомы только того металла, положительные ионы которого содержатся в растворе электролита.

Методом электролиза наносят очень тонкое цинковое покрытие стальных листов и деталей любой конфигурации. Гальваническое покрытие эффективно защищает металл от коррозии.

В вакуумных электронных приборах

Примером вакуумных приборов служат радиоэлектронные лампы, электронно-лучевые трубки, кинескопы телевизоров. Они работают по одному и тому же принципу: Разогретый катод испускает электроны, которые устремляются к аноду с высоким положительным электрическим потенциалом.

Образование электронов на раскаленном электроде называется термоэмиссией, а электрический ток, возникающий между катодом и анодом, называется термоэмиссионным. Ценность таких приборов в том, что они проводят ток только в одном направлении – от катода к аноду.

Добавление сетки между электродами позволяет регулировать параметры тока в широких пределах, путем изменения напряжения на сетке. Такие вакуумные лампы используются в качестве усилителей сигналов. В данное время вакуумные приборы используются довольно редко, так как их с успехом заменяют миниатюрные полупроводниковые диоды и транзисторы, часто выполненные на монокристалле в виде микросхемы.

В полупроводниковых приборах

Электронные детали на основе полупроводников ценятся малым потреблением тока и небольшими размерами. Они почти вытеснили вакуумные лампы из употребления. Выводы полупроводниковых приборов традиционно называют анодами и катодами.

При всех плюсах полупроводников, у этих приборов есть недостаток – они «шумят». В усилителях большой мощности эти шумы становятся заметными. В качественной усилительной аппаратуре по-прежнему применяются вакуумные лампы.

Электронно-лучевые кинескопы в современных телевизорах вытесняются экранами с LED подсветкой. Они более экономичны, отлично передают цветовую палитру, позволяют сделать приемник почти плоским.

Почему нужно уметь отличать анод от катода

Определение «плюса» и «минуса» светодиода необходимо для проверки имеющейся пиктограммы там, где она отсутствует. Часто это случается на новых, «б-ушных», выпаянных из старых схем, диодах. В этом случае нет никакой гарантии, что производитель дешевых элементов не ошибся в их маркировке. Поэтому гарантии соответствия имеющейся маркировки никакой нет.

Подключение без проведения предварительного тестирования может завершиться пробивкой LED и не работающей электрической цепью. Произойдёт это из-за того, что ток диода движется в одном направлении (кроме двухцветников, моргающих светодиодов или ИК). Только верная распайка позволит получить нормальную, рабочую электросхему.

В электронике

Электроды или ножки полупроводниковых и вакуумных электронных приборов тоже часто называют анодом и катодом. Рассмотрим условное графическое обозначение полупроводникового диода на схеме:

Как мы видим, анод у диода подключается к плюсу батареи. Он так называется по той же причине – в этот вывод у диода в любом случае втекает ток. На реальном элементе на катоде есть маркировка в виде полосы или точки.

У светодиода аналогично. На 5 мм светодиодах внутренности видны через колбу. Та половина, что больше — это катод.

Также обстоит ситуация и с тиристором, назначение выводов и «однополярное» применение этих трёхногих компонентов делают его управляемым диодом:

У вакуумного диода анод тоже подключается к плюсу, а катод к минусу, что изображено на схеме ниже. Хотя при приложении обратного напряжения – названия этих элементов не изменятся, несмотря на протекание электрического тока в обратном направлении, пусть и незначительного.

С пассивными элементами, такими как конденсаторы и резисторы дело обстоит иначе. У резистора не выделяют отдельно катод и анод, ток в нём может протекать в любом направлении. Вы можете дать любые названия его выводам, в зависимости от ситуации и рассматриваемой схемы. У обычных неполярных конденсаторов также. Реже такое разделение по названиям контактов наблюдается в электролитических конденсаторах.

Поток заряда

Схема медного катода в гальваническом элементе (например, в батарее). Положительно заряженные катионы движутся к катоду, позволяя положительному току i вытекать из катода.

Обычный ток течет от катода к аноду за пределами ячейки или устройства (электроны движутся в противоположном направлении), независимо от типа ячейки или устройства и режима работы.

Полярность катода по отношению к аноду может быть положительной или отрицательной в зависимости от того, как работает устройство. Положительно заряженные катионы всегда движутся к катоду, а отрицательно заряженные анионы движутся к аноду, хотя полярность катода зависит от типа устройства и даже может меняться в зависимости от режима работы. В устройстве, которое поглощает энергию заряда (например, при подзарядке аккумулятора), катод является отрицательным (электроны выходят из катода, а положительный заряд течет в него), а в устройстве, которое обеспечивает энергию (например, используется батарея) , катод положительный (электроны втекают в него и заряд вытекает): батарея или гальванический элемент в использовании имеет катод, который является положительным выводом, поскольку именно там ток выходит из устройства. Этот наружный ток переносится внутри положительными ионами, движущимися от электролита к положительному катоду (химическая энергия отвечает за это «восходящее» движение). Внешне он продолжается электронами, движущимися в батарею, что составляет положительный ток, текущий наружу. Например, медный электрод гальванического элемента Даниэля является положительным выводом и катодом. Аккумулятор, который перезаряжается, или электролитический элемент, выполняющий электролиз, имеет катод в качестве отрицательного вывода, с которого ток выходит из устройства и возвращается к внешнему генератору, когда заряд входит в аккумулятор / элемент. Например, изменение направления тока в гальванической ячейке Даниэля преобразует ее в электролитическую ячейку, в которой медный электрод является положительной клеммой, а также анодом . В диоде катодом является отрицательный вывод на заостренном конце символа стрелки, где ток выходит из устройства. Примечание: обозначение электродов для диодов всегда основано на направлении прямого тока (направление, указанное стрелкой, в котором ток течет «наиболее легко»), даже для таких типов, как стабилитроны или солнечные элементы, где интересующим током является обратный ток. В вакуумных трубках (включая электронно-лучевые трубки ) это отрицательный вывод, через который электроны входят в устройство из внешней цепи и попадают в почти вакуум трубки, образуя положительный ток, вытекающий из устройства.

Определение анода и катода

Для начала возьмем очень серьезный документ, который является ЗАКОНОМ для науки, техники и, конечно, школы. Это «ГОСТ 15596-82. ИСТОЧНИКИ ТОКА ХИМИЧЕСКИЕ. Термины и определения». Там на странице 3 можно прочесть следующее: «Отрицательный электрод химического источника тока это электрод, который при разряде источника является анодом». То же самое, «Положительный электрод химического источника тока это электрод, который при разряде источника является катодом». (Термины выделены мной. БХ). Но тексты правила и ГОСТа противоречат друг-другу. В чем же дело?

А всё дело в том, что, например, деталь, опущенная в электролит для никелирования или для электрохимического полирования, может быть и анодом и катодом в зависимости от того наносится на нее другой слой металла или, наоборот, снимается. Электрический аккумулятор является классическим примером возобновляемого химического источника электрического тока. Он может быть в двух режимах – зарядки и разрядки. Направление электрического тока в этих разных случаях будет в самом аккумуляторе прямо противоположным, хотя полярность электродов не меняется.

В зависимости от этого назначение электродов будет разным. При зарядке положительный электрод будет принимать электрический ток, а отрицательный отпускать. При разрядке – наоборот. При отсутствии движения электрического тока разговоры об аноде и катоде бессмысленны.

«Поэтому, во избежание неясности и неопределенности, а также ради большей точности, – записал в своих исследованиях М.Фарадей в январе 1834г., – я в дальнейшем предполагаю применять термины, определение которых сейчас дам».

Каковы же причины введения новых терминов в науку Фарадеем? А вот они: «Поверхности, у которых, согласно обычной терминологии, электрический ток входит в вещество и из него выходит, являются весьма важными местами действия и их необходимо отличать от полюсов». В те времена после открытия Т. Зеебеком явления термоэлектричества имела хождение гипотеза о том, что магнетизм Земли обусловлен разностью температур полюсов и экватора, вследствие чего возникают токи вдоль экватора. Она не подтвердилась, но послужила Фарадею в качестве «естественного указателя» при создании новых терминов. Магнетизм Земли имеет такую полярность, как если бы электрический ток шел вдоль экватора по направлению кажущегося движения солнца.

Обозначение анода и катода

Фарадей записывает: «На основании этого представления мы предлагаем назвать ту поверхность, которая направлена на восток – анодом, а ту, которая направлена на запад – катодом». В основе новых терминов лежал древнегреческий язык и в переводе они значили: анод – путь (солнца) вверх, катод – путь (солнца) вниз.

В русском языке есть прекрасные термины ВОСХОД и ЗАХОД, которые легко применить для данного случая, но почему-то переводчики Фарадея этого не сделали. Мы же рекомендуем пользоваться ими, ибо в них корнем слова является ХОД и, во всяком случае, это напомнит пользователю термина, что без движения тока термин не применим. Для желающего проверить рассуждения создателя термина с помощью других правил, например правила пробочника, сообщаем, что северный магнитный полюс Земли лежит в Антарктиде, возле Южного географического полюса.

Ошибкам в применениях терминов АНОД и КАТОД нет числа. В том числе и в зарубежных справочниках и энциклопедиях. Поэтому в электрохимии пользуются другими определениями, более понятными читателю. У них анод – это электрод, где протекают окислительные процессы, а катод – это электрод, где протекают восстановительные процессы. В этой терминологии нет места электронным приборам, но при электротехнической терминологии указать анод радиолампы, например, легко. В него входит электрический ток. (Не путать с направлением электронов).

Как работает батарейка.

Знак анода и катода

В литературе встречается различное обозначение знака анода — «+» или «−», что определяется, в частности, особенностями рассматриваемых процессов.

В электрохимии принято считать, что катод — электрод, на котором происходит процесс восстановления, а анод — тот, где протекает окисление. При работе электролизера (например, при рафинировании меди) внешний источник тока обеспечивает на одном из электродов избыток электронов (отрицательный заряд), здесь происходит восстановление металла, это катод. На другом электроде обеспечивается недостаток электронов и окисление металла, это анод.

В то же время при работе гальванического элемента (к примеру, медно-цинкового), избыток электронов (и отрицательный заряд) на одном из электродов обеспечивается не внешним источником тока, а собственно реакцией окисления металла (растворения цинка), то есть здесь отрицательным, если следовать приведённому определению, будет уже анод. Электроны, проходя через внешнюю цепь, расходуются на протекание реакции восстановления (меди), то есть катодом будет являться положительный электрод.

В соответствии с таким толкованием, для аккумулятора анод и катод меняются местами в зависимости от направления тока внутри аккумулятора.

В электротехнике анод — положительный электрод, ток течёт от анода к катоду, электроны, соответственно, наоборот.

Назначение магниевого анода

Он защищает бак от коррозии и берет на себя все процессы окисления. Рассмотрим, как функционируют накопительные водонагреватели, подробнее.

Баки бойлеров «Термекс» или «Аристон» выполняются из нержавеющей стали либо покрываются защитным слоем эмали. Согласно утверждению, нержавеющая сталь не поддается коррозии. Но следует учитывать такие моменты:

  • Корпус выполняется из пищевой нержавейки. Материал не способен противостоять окислению больше полугода. Применяй производитель для изготовления сталь высокого качества, стоимость техники была бы слишком высока.
  • Бак не создается цельным. В основном он состоит из двух частей, которые соединяются швами. Под воздействием высоких температур швы могут деформироваться, что приводит к потере свойств нержавеющего материала.

Что еще нужно знать? Производители пытаются предотвратить реакцию, покрывая внутренние стенки защитными средствами. Со временем они также теряют эффективность. При нагреве вода расширяет металл, поэтому сплав растягивается, теряя свойства.

Металлический корпус и ТЭН создают гальваническую пару. Корпус в данном случае выступает анодом. Чтобы он не портился при воздействии воды, производители установили рядом с ТЭНом сплав, в состав которого входит магний. Он берет на себя роль анода — в итоге весь кислород уходит на его окисление, а бак остается целым.

Практически все марки Polaris, «Горение», «Электролюкс» включают в свои модели магниевые аноды. Как они выглядят? Это сплав на палочке с ровной поверхностью. При эксплуатации коррозия начинает разъедать и их поверхность.

Почему выбрали магний

Неужели нельзя сделать элемент из других материалов? На самом деле себестоимость магния невысока, что позволяет не повышать стоимость готового изделия. Также он имеет слабый электрохимический потенциал. Магний притягивает к себе соль из воды, не допуская ее оседания на других деталях.

Каков срок службы анода и как часто его менять? Специалисты рекомендуют выполнять замену каждый год.

Признаки, когда пора менять деталь:

  • Во время работы слышится шум.
  • Вода приобрела неприятный запах, стала мутной.
  • Длительный нагрев.
  • Частое включение и отключение бойлера.

Это также указывает на то, что ТЭН полностью покрылся накипью и ему нужна чистка.

Выполнить ее вы сможете одновременно с заменой анода.

Параметры тока, важные для подключения диода в сеть

Работа светодиодов базируется на трех основных параметрах:

  • напряжение питания;
  • ток потребления;
  • рассеиваемая мощность.

Наиболее важными из них являются напряжение светодиода и сила тока. Значение мощности несложно вычислить самостоятельно, перемножив эти два показателя. Знание этих параметров может пригодиться на любых стадиях работ с элементами — от замены вышедших из строя, до подбора источника питания. Базовые характеристики светодиодов необходимо рассмотреть внимательнее:

Потребляемый ток LED

Сила тока определяет стабильность функционирования элемента. Увеличение этого параметра, даже в небольших пределах, вызывает преждевременное старение кристалла (снижение интенсивности свечения) с одновременным усилением цветовой температуры. Для защиты от превышения силы тока в светодиодных светильниках или лампах устанавливаются драйверы — стабилизаторы. Подключение к сети отдельных светодиодов производится через резисторы, обеспечивающие соответствующее падение напряжения и силы тока. Номинал этих резисторов должен быть рассчитан для каждого светодиода исходя из его характеристик.

Напряжение

«Напряжение на светодиоде» — это не совсем верное выражение. Правильнее применять термин «падение напряжения», обозначающий величину на выходе устройства при пропускании через светодиод номинального тока. Элементы разных цветов имеют собственное рабочее напряжение:

  • для синих, белых или зеленых светодиодов напряжение составляет 3 вольта;
  • красные и желтые устройства — от 1,8 до 2,4 В.

По этим показателям можно примерно определить напряжение светодиода. Однако, нельзя уверенно сказать, какое напряжение является номинальным для данного элемента, если просто посмотреть на его цвет и не выполнить никаких дополнительных измерений. При изменении параметров тока оттенок свечения изменяется, поэтому визуально определяется не номинал, а реально существующее напряжение.

Мощность диода

Мощность — это произведение силы тока на напряжение. Показатель расчетный, внешне он практически не подлежит определению. Точно узнать мощность светодиода можно из данных на упаковке, с определенной долей погрешности параметр измеряется мультиметром. Подготовленный, опытный человек способен определить значение по внешнему виду элемента, но и тут возможны ошибки, поскольку многие модели очень похожи друг на друга.

Почему важно знать эти характеристики

Знание всех рабочих параметров светодиода поможет произвести правильную замену сгоревшего элемента. Кроме того, если знать потребление тока и вольтаж, можно вычислить мощность устройства, которая необходима при подборе соответствующего блока питания.

Например, если имеется светодиод с напряжением 3 В и силой тока 0,1 А, его мощность составит 0,3 Вт. Соответственно, при соединении 10 штук значение увеличится до 3 Вт.

Исходя из этих показателей, для сборки понадобится блок питания мощностью 3,3 Вт (с учетом 10% запаса для более стабильной работы).

Процесс электролиза или зарядки аккумулятора

Эти процессы похожи и обратны гальваническому элементу, поскольку здесь не энергия поступает за счет химической реакции, а наоборот – химическая реакция происходит за счет внешнего источника электричества.

В этом случае плюс источника питания всё также называется катодом, а минус анодом. Зато контакты заряжаемого гальванического элемента или электроды электролизера уже будут носить противоположные названия, давайте разберемся почему!

Важно!

При разряде гальванического элемента анод – минус, катод – плюс, при зарядке наоборот.

Так как ток от плюсового вывода источника питания поступает на плюсовой вывод аккумулятора – последний уже не может быть катодом. Ссылаясь на вышесказанное можно сделать вывод, что в этом случае электроды аккумулятора при зарядке условно меняются местами.

Тогда через электрод заряжаемого гальванического элемента, в который втекает электрический ток, называют анодом. Получается, что при зарядке у аккумулятора плюс становится анодом, а минус катодом.

Подключение мигающих и многоцветных светодиодов

Внешне мигающие светодиоды ничем не отличаются от обычных аналогов и могут мигать одним, двумя или тремя цветами по заданному производителем алгоритму. Внутреннее отличие состоит в наличии под корпусом ещё одной подложки, на которой расположен интегральный генератор импульсов. Номинальный рабочий ток, как правило, не превышает 20 мА, а падение напряжения может варьироваться от 3 до 14 В. Поэтому перед подключением мигающего светодиода нужно ознакомиться с его характеристиками. Если их нет, то узнать параметры можно экспериментальным путём, подключившись к регулируемому БП на 5–15 В через резистор сопротивлением 51-100 Ом.

В корпусе многоцветного RGB-светодиода расположены 3 независимых кристалла зелёного, красного и синего цвета. Поэтому при расчёте номиналов резисторов нужно помнить, что каждому цвету свечения соответствует своё падение напряжения.

Распознавание полярности источником питания.

Следующим наглядным методом для распознания катода и анода будет присоединение к источнику питания. Данный способ, как и предыдущий, позволяет узнать еще и исправность LED элемента.

Естественно, что для опыта необходим источник напряжения. Отлично подойдет блок питания с плавной регулировкой. Светодиод следует присоединить и постепенно увеличивать напряжение. Если при подаче 3-4 В элемент еще не светится, значит, с полярностью не угадали.

Если такого блока питания под рукой нет, то можно применить батарейку или аккумулятор от мобильного телефона. Поскольку напряжение на них может достигать 12 В, то напрямую светодиод присоединять нельзя. Для предупреждения поломки следует включить в цепь резистор. Выбрать подходящее по величине сопротивление вам поможет статья «Расчет резистора (сопротивления) для светодиода».

Резистор стоит подпаять к одному из контактов LED элемента. Полученной конструкцией коснуться выводов источника питания. Если полярность предположена верно, то диод начнет излучать свет. В ином случае, надо поменять контакты местами.

Если под рукой есть плоская севшая батарейка от часов или с материнской платы (тип CR2032), то можно обойтись без резистора. Напряжением таких источников питания не превышает 6 В, что безопасно для светодиода. Батарейку зажимают между выводами диода и по свечению или его отсутствию определяют полярность.

Гальванотехника

Процессы осаждения металлов в результате химической реакции под воздействием электрического тока (при электролизе) называют гальванотехникой. Таким образом мир получил посеребренные, золоченные, хромированные или покрытые другими металлами украшения и детали. Этот процесс используют как в декоративных, так и в прикладных целях – для улучшения стойкости к коррозии различных узлов и агрегатов механизмов.

Принцип действия установок для нанесения гальванического покрытия лежит в использовании растворов солей элементов, которыми будут покрывать деталь, в качестве электролита.

В гальванике анод также является электродом, к которому подключаются плюсовой вывод источника питания, соответственно катод в этом случае – это минус. При этом металл осаждается (восстанавливается) на минусовом электроде (реакция восстановления). То есть если вы хотите сделать позолоченное кольцо своими руками – подключите к нему минусовой вывод блока питания и поместите в ёмкость с соответствующим раствором.

Жертвенный анод

Расходуемые аноды, устанавливаемые «на лету» для защиты металлических конструкций от коррозии.

При катодной защите металлический анод, который более реагирует на коррозионную среду, чем металлическая система, которую необходимо защитить, электрически связан с защищаемой системой. В результате металлический анод частично корродирует или растворяется вместо металлической системы. Например, корпус корабля из железа или стали может быть защищен цинковым анодом , который растворяется в морской воде и предотвращает коррозию корпуса. Жертвенные аноды особенно необходимы для систем, в которых статический заряд создается под действием текущих жидкостей, таких как трубопроводы и плавсредства. Протекторные аноды также обычно используются в водонагревателях резервуарного типа.

В 1824 году, чтобы уменьшить воздействие этого разрушительного электролитического воздействия на корпуса кораблей, их крепления и подводное оборудование, ученый-инженер Хэмфри Дэви разработал первую и до сих пор наиболее широко используемую систему защиты от электролиза для судов . Дэви установил расходуемые аноды, сделанные из более электрически реактивного (менее благородного) металла, прикрепленные к корпусу судна и электрически связанные, чтобы сформировать цепь катодной защиты.

Менее очевидным примером этого типа защиты является процесс цинкования железа. Этот процесс покрывает железные конструкции (например, ограждения) покрытием из металлического цинка . Пока цинк остается неповрежденным, железо защищено от воздействия коррозии. Неизбежно происходит повреждение цинкового покрытия в результате растрескивания или физического повреждения. Когда это происходит, коррозионные элементы действуют как электролит, а комбинация цинка и железа — как электроды. Результирующий ток гарантирует, что цинковое покрытие будет потеряно, но основное железо не подвергнется коррозии. Такое покрытие может защитить железную конструкцию в течение нескольких десятилетий, но как только защитное покрытие израсходовано, железо быстро корродирует.

Если же, наоборот, олово используется для покрытия стали, то при нарушении покрытия оно фактически ускоряет окисление железа.

Классификация и система обозначений

Параметры, влияющие на классификацию диодов

Классификация диодов зависит от целого ряда факторов. В частности, это касается следующих условий:

  • Физических свойств.
  • Основных электрических параметров.
  • Конструктивно-технологических признаков.
  • Род полупроводников.

Принадлежность к тому или иному типу показывается по принципу системы условных обозначений. Периодически она обновляется с дополнением новых подвидов. В большинстве случаев маркировка осуществляется посредством использования буквенно-цифровых кодов.

Советская маркировка

Системы буквенно-цифровых сокращений диодов, использующиеся в электротехнике советской эпохи, неоднократно изменялась. Однако, наибольшей популярностью пользовался способ, параметры которого прописаны в ГОСТ 11.336.919-81. К примеру, как это показано в списке, приведённом на изображении.


Советская маркировка диодовИсточник ru.wikipedia.org

В качестве примера можно привести такие обозначения:

  • ВИ 121.
  • ДГ 805 А.
  • ЦК 504Ж.

Помимо этого, система аббревиатур подразумевает использование дополнительных значений с целью конфигурации независимого конструктивно-технологического свойства изделия.

Иностранные способы

Стандартизация распознавания и маркировки диодов за границей РФ не практикуется. По этой причине, в разных странах действуют собственные правила. Например, в США действует система, внедрённая комитетом инженерной стандартизации полупроводниковой продукции Electronic Industries Alliance и Joint Electron Devices Engineering Council (EIA/JEDEC).

На территории ЕвроСоюза используются иные способы, маркирующиеся под аббревиатурой европейских принципов обозначения и регистрации типов компонентов – Pro Electron. В соответствии с требованиями документа диоды обозначаются двумя буквами и цифровым кодом. Полная распиновка сокращений приведена на следующем изображении.


Маркировка диодов по европейскому принципуИсточник ru.wikipedia.org

Другие способы

К другим распространённым системам маркировки относят:

  • GD-серию, в которую входят германиевые диоды, например GD9. Методика относится к старым и не применяющимся в современной промышленности.
  • OA-серию с аналогичными германиевыми диодами, разработанными компанией Mullard.

Вывод

При обычном использовании перезаряжаемой батареи потенциал положительного электрода как при разряде, так и при перезарядке остается больше, чем потенциал отрицательного электрода. С другой стороны, роль каждого электрода переключается во время цикла разрядки / зарядки.

  • Во время разряда положительным является катод, отрицательным является анод.
  • Во время заряда положительным является анод, отрицательным является катод.

Тексты, описывающие аккумуляторные аноды или катоды, безусловно, косвенно рассматривают случай разряда, что является неполным предсталением о процессах, происходящих внутри вторичного элемента.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector