Описание светодиодов типа cob

Подключение мигающих и многоцветных светодиодов

Внешне мигающие светодиоды ничем не отличаются от обычных аналогов и могут мигать одним, двумя или тремя цветами по заданному производителем алгоритму. Внутреннее отличие состоит в наличии под корпусом ещё одной подложки, на которой расположен интегральный генератор импульсов. Номинальный рабочий ток, как правило, не превышает 20 мА, а падение напряжения может варьироваться от 3 до 14 В. Поэтому перед подключением мигающего светодиода нужно ознакомиться с его характеристиками. Если их нет, то узнать параметры можно экспериментальным путём, подключившись к регулируемому БП на 5–15 В через резистор сопротивлением 51-100 Ом.

В корпусе многоцветного RGB-светодиода расположены 3 независимых кристалла зелёного, красного и синего цвета. Поэтому при расчёте номиналов резисторов нужно помнить, что каждому цвету свечения соответствует своё падение напряжения.

Устройство светодиодных источников света

Светодиодный источник состоит из следующих конструктивных элементов:

  • LED-диоды;
  • драйверы;
  • корпус;
  • радиатор;
  • цоколь.

Светодиоды

Несколько лет назад конструкция светодиодной лампы незначительно отличалось из-за отсутствия широкого ассортимента LED-диодов. Самыми распространенными были чипы на 3–5 мм. Позже появились изделия на 10 мм.

Сегодня светодиодов намного больше. Чаще всего используются SMD 5050, SMD 3528, SMD 5730, SMD 2835, 1W, 3W и 5W.

Количество светодиодов бывает разным, его задает производитель. При монтаже нескольких диодов производят специальные расчеты, чтобы вывести оптимальный ток потребления. Припой осуществляется к текстолитовым или алюминиевым платам. Светодиоды собираются в группы, соединяемые последовательно. Опять же, количество групп неограниченно.

Последовательное соединение обеспечивает постоянный ток, но есть существенный недостаток — если выйдет из строя хотя бы один LED-диод, то перестает работать все изделие. С другой стороны, диод можно без проблем заменить на новый.

Платы, к которым припаиваются источники света, классифицируются по форме и бывают круглыми, прямоугольными, овальными, многоугольными и т. д.

Драйверы

Драйверы предназначены для преобразования входящего напряжения в пригодную для питания устройства величину. Причем питание для каждой группы светодиодов может быть разным. Самыми распространенными являются трансформаторные схемы с драйверами.

Конструктивные элементы могут быть двух типов — открытыми и закрытыми (в корпусе). Монтируют их в корпус ламп, осветительных приборов.

Китайские производители нередко пытаются сэкономить на приборах, устанавливая вместо драйверов обычные ограничители тока со схемой на основе конденсатора. Избегайте покупки таких изделий, поскольку помимо крайней неэкономичности они негативно воздействуют на здоровье человека (высокая пульсация).

Цоколь

Поскольку светодиодные изделия позиционируются как лучшие аналоги лампам накаливания, то нет ничего удивительного в том, что они изготавливаются со стандартными цоколями — E27 и E14. Последние часто применяются в ночных и настенных светильниках.

За рубежом иные стандарты, поэтому там чаще можно встретить светодиодные лампы E26.

Корпус

В отличие от ламп накаливания для светодиодных нет необходимости в полной герметичности колб, да и газовая среда внутри отсутствует. Одна из разновидностей светодиодных светильников — филаментный источник, повторяющий устройство лампы накаливания и нуждающийся в газовой среде.

Радиаторы

Данные электротехнические изделия боятся высокой температуры и перегрева. По этой причине для повышения срока эксплуатации необходимо устройство для отвода тепла. Алюминиевые платы частично снижают влияние перегрева, но этого недостаточно. Дорогие и качественные лампы обязательно используют радиаторы, размер которых зависит от количества светодиодов в приборе.

Наличие радиатора повышает стоимость и габариты изделия, но является обязательным условием для создания качественного и долговечного прибора.

Виды светодиодов:

Светодиоды по назначению делятся на два основных типа:

– индикаторные;

– осветительные.

Индикаторные представляют собой слабые по яркости и мощности элементы, применяемые чаще всего в различных электронных приборах в качестве индикаторов включения/выключения той или иной функции: подсветка панели приборов в транспортном средстве, жидкокристаллическом телевизоре, компьютерном блоке питания и прочее. Их распространение весьма широко, т.к. эти маломощные LED-приборы не требуют дорогостоящего оборудования для изготовления, а потому их себестоимость мала.

Осветительные диоды – это элементы с высокой мощностью и яркостью, основная область применения которых – осветительные электрические приборы.

Также светодиоды различают по типу корпуса. К ним относят:

– DIP (Direct In-line Package) – один из самых первых изобретенных элементов. На сегодняшний день считающийся устаревшим. Основная область использования – игрушки с элементами электроники и световые табло;

– Superflux или «пиранья» – аналог предыдущего поколения, но имеющий четыре контакта. В них улучшен крепеж, что позволяет диодам надежнее держаться, снижена теплоотдача. Наиболее частое применение – оснащение приборной панели в автомобилях;

– SMD (Surface Mounted Device, что в переводе с англ. означает «устройство поверхностного монтажа») – самый популярный тип корпуса для использования в осветительных электроприборах;

– COB (Chip On Board) – усовершенствованная модель SMD.

Определяем полярность мультиметром

При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.

Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.

Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?

Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.

Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.

Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.

В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.

Устройство и принцип работы светодиодов

Светодиодом
называется прибор-полупроводник, способный преобразовывать электрический ток в
видимое световое излучение. Часто применяемое обозначение светодиода ЛЕД
является абберевиатурой light-emitting diode
– светоизлучающий диод.

В
отличие от ламп, излучение которых лежит в широком спектре, кристалл светодиода по внешнему полю излучает конкретный цвет. Диапазон освещения определяется
химическими особенностями полупроводников, используемых в каждом случае.

Все модели светодиодов содержат следующие элементы:

  • катод, отвечающий за подачу отрицательной части волны постоянного тока на полупроводниковый кристалл;
  • анод, осуществляющий подачу положительной части волны на кристалл;
  • рассеиватель, увеличивающий угол свечения;
  • рефлектор, который отражает световой поток на рассеиватель;
  • кристалл или чип полупроводника, осуществляющий излучение светового потока, используя p-n переход.

Конструкция
диода включает два полупроводника, легированных разными примесями. Один из них
содержит свободные электроны, а второй – отверстия (дырки). Это обеспечивает
p-n переход между полупроводниками, когда электроны переходят от донора к
реципиенту, занимая свободные отверстия и выделяя фотоны. Данная реакция
возможна при наличии источника постоянного тока. На практике применяются
гетероструктуры – многослойные полупроводники, имеющие самый маленький вес.

Зная, какие бывают светодиоды по мощности и по внешнему виду, можно выбрать
прибор для разных случаев. Они делятся на две большие группы:

  1. Индикаторные. Маленькие светодиоды относительно небольшой мощности с умеренной яркостью. Применяются для цветовой индикации, при подсветке приборных панелей и прочего.
  2. Осветительные. Их мощность может доходить до нескольких десятков Ватт, за счёт чего достигается свечение высокой интенсивности. Используются в составе светодиодных лент и ламп для освещения помещений, в фарах и иных приборах.

Виды преобразователей тока по типу устройства

Производятся драйверы двух типов: линейные и импульсные. У них одна функция, но сфера применения, технические особенности и стоимость различаются. Сравнение преобразователей разных типов представлено в таблице:

Тип  устройства Технические характеристики Плюсы Минусы Сфера применения

Линейный

Генератор тока на транзисторе с p-каналом, плавно стабилизирует ток при переменном напряжении Не создает помех, недорогой КПД менее 80%, сильно нагревается Маломощные светодиодные светильники, ленты, фонарики

Импульсный

Работает на основе широтно-импульсной модуляции Высокий КПД (до 95%), подходит для мощных приборов, продлевает срок службы элементов Создает электромагнитные помехи Тюнинг автомобилей, уличное освещение, бытовые LED-источники

Другие виды LED

Мигающий

Особенность конструкции мигающего светодиода – каждый контакт является одновременно катодом и анодом. Внутри него находятся два светоизлучающих кристалла с разной полярностью. Если такой источник света подключить через понижающий трансформатор к сети переменного тока он будет мигать с частотой 25 раз в секунду.

Для другой частоты мигания используются специальные драйверы. Сейчас такие диоды уже не применяются.

Разноцветный

Разноцветный светодиод – два или больше диода, объединенных в один корпус. У таких моделей один общий анод и несколько катодов.

Изменяя через специальный драйвер питания яркость каждой матрицы можно добиться любого света свечения.

При использовании таких элементов в самодельных схемах не стоит забывать, что у разноцветных кристаллов разное напряжение питания. Этот момент необходимо учитывать и при соединении большого количества разноцветных LED источников.

Другой вариант – диод со встроенным драйвером. Такие модели могут быль двухцветные с поочерёдным включением каждого цвета. Частота мигания задаётся встроенным драйвером.

Более продвинутый вариант – RGB диод, изменяющий цвет по заранее заложенной в чип программе. Тут варианты свечения ограниченны лишь фантазией производителя.

Драйверы для светодиодов: где купить и сколько стоят

Приобрести стабилизаторы для светодиодных ламп и микросхемы к ним можно в магазине радиодеталей, электротехники и на многих торговых интернет-площадках. Последний вариант – самый экономичный. Стоимость устройства зависит от его технических характеристик, типа и производителя. Средние цены на некоторые виды драйверов приведены в таблице ниже:

Модель Технические параметры Цена, руб.

DC12V

  • Мощность: 18 Вт
  • Выходное напряжение: 12 В
  • Входное напряжение: 100÷240 В
190
драйвер DC12V

LB0138

  • Мощность: 6 Вт,
  • Выходное напряжение: 45 В
  • Входное напряжение: 220 В
160
драйвер LB0138

YW-83590

  • Мощность: 21 Вт
  • Выходное напряжение: 25÷35 В
  • Входное напряжение: 200÷240 В
680
драйвер YW-83590

LB009

  • Мощность: 150 Вт
  • Входное напряжение 170÷260 В
  • Выходное напряжение: 12 В
730
драйвер LB009

Микросхема PT4115 стоит от 40 до 150 рублей за штуку. Стоимость более мощных элементов колеблется от 100 рублей до нескольких тысяч.

Принцип работы светодиодов

Любой светодиод имеет p-n-переход. Свечение возникает при рекомбинации электронов и дырок в электронно-дырочном переходе. P-n переход создается при соединении двух полупроводников разного типа электропроводности. Материал n-типа легируется электронами, p-типа – дырками. 

При подаче напряжения электроны и дырки в p-n-переходе начинают перемещаться и занимать места. Когда носители заряда подходят к электронно-дырочному переходу, электроны помещаются в материал p-типа. В результате перехода электронов с одного энергетического уровня на другой выделяются фотоны.

Не всякий p-n переход может излучать свет. Для пропускания света нужно соблюсти два условия:

ширина запрещенной зоны должна быть близка к энергии кванта света; 

полупроводниковый кристалл должен иметь минимум дефектов.  

Реализовать подобное в структуре с одним p-n-переходом не получится. По этой причине создаются многослойные структуры из нескольких полупроводников, которые называются гетероструктурами. 

Для создания светодиодов используются прямозонные проводники с разрешенным прямым оптическим переходом зона-зона. Наиболее распространенные материалы группы А3В5 (арсенид галлия, фосфид индия), А2В4 (теллурид кадмия, селенид цинка). 

Цвет светоизлучающего диода зависит от ширины запрещенной зоны, в которой происходит рекомбинация электронов и дырок. Чем больше ширина запрещенной зоны и выше энергия квантов, тем ближе к синему излучаемый свет. Путем изменения состава можно добиться свечения в широком оптическом диапазоне – от ультрафиолета до среднего инфракрасного излучения. 

Светодиоды инфракрасного, красного и желтого цветов изготавливаются на основе фосфида галлия, зеленый, синий и фиолетовый – на основе нитридов галлия. 

Принцип работы светодиода:

Отличительной особенностью светодиода от более привычных нам осветительных устройств (лампы накаливания, люминесцентные лампы) считается отсутствие в нем нити накаливания и хрупкой колбы, заполненной газом.

Свет в светодиоде образуется благодаря p-n-переходу, пропускающему электрический ток. Так, полупроводниковые материалы p-типа обладают возможностью накапливать заряды с положительными частицами, а полупроводниковые материалы n-типа – с отрицательными. Материалы n-типа представляют собой «накопительный склад» электронов, тогда как в материалах p-типа появляются свободные пространства (дырки), где электронов нет. В тот момент, когда в диод через контакты поступает электрический ток, электроны начинают движение, устремляясь к электронно-дырочному переходу, где инжектируются непосредственно в p-тип. Одновременно в n-типе, представляющем собой отрицательный контакт, также возникает подобное движение.

При протекании электрического тока через p-n-переход в прямом направлении носители заряда (электроны и дырки) рекомбинируют, т.е. происходит исчезновение пары свободных носителей противоположного заряда с выделением энергии в виде излучения фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Однако не все полупроводниковые материалы эффективно испускают свет (фотоны) при рекомбинации. Лучшие излучатели относятся к прямозонным полупроводникам. Диоды, сделанные из непрямозонных полупроводников, свет практически не излучают.

Изменяя состав полупроводниковых материалов, можно создавать светодиоды, испускающие свет в видимой части спектра, а также в ультрафиолетовом и среднем инфракрасном диапазоне.

Характеристики светодиодов:

LED-приборы имеют несколько основных параметров.

Это:

– потребляемый ток;

– мощность потребления;

– номинальное напряжение;

– цветовая температура;

– сила светового потока.

Практически все эти характеристики указаны на самом электроприборе, но есть и другие показатели, которые считаются специфическими.

Сила потребляемого тока. Сила потребляемого тока определяет яркость свечения светодиода. Ток потребления светодиода измеряется в амперах и чаще всего соответствует показателю 0,02 А. Это параметр одного кристалла. Если чипов несколько, то и показатель увеличивается: 0,04 А при двух кристаллах, 0,06 А при трех и т.д. Учитывать показатель потребляемого тока следует для выбора резистора, устанавливаемого на вводе. Если показатели не будут соответствовать друг другу, высокий ток преодолеет сопротивление светодиода и он перегорит, причем практически мгновенно. Также резистор защищает прибор от скачков тока в сети, возникающих при различных перепадах напряжения.

Сопротивление светодиода. Этот показатель способен изменяться, т.к. является нелинейным и колеблется в зависимости от включения в цепь. При включении в одну сторону он может достигать приблизительно одного килоома (кОм), в другую – увеличиваться до нескольких мегаом (МОм). Соответственно, чем более высокое напряжение испытывает диод, тем меньше оказываемое им сопротивление.

Номинальное напряжение. Данная характеристика светодиода напрямую зависит от его цвета, а последний параметр – от материала, выбранного для его изготовления и включения в его состав различных добавок.

Инфракрасное свечение характерно для арсенида галлия (GaAs) и арсенида алюминия галлия (AlGaAs). В этом случае при силе тока в 20 мА диапазон напряжения составляет 1,1-1,6 В, а типовое значение напряжения – 1,2 В.

Красный, оранжевый и желтый цвета диода достигаются благодаря твердым растворам арсенида-фосфида галлия (GaAsP), фосфида галлия (GaP) и фосфида алюминия-галлия-индия (AlInGaP). Диапазоны напряжения при той же силе тока 20 мА составляют:

  • красного светодиода – 1,5-2,6 В;
  • оранжевого светодиода – 1,7-2,8 В;
  • желтого светодиода – 1,7-2,5 В.

Типовое значение напряжение всех цветов равно 2,0 В.

Зеленый светодиод получают благодаря материалам фосфида галлия (GaP) и нитрида индия-галлия (InGaN). При тех же номинальных 20 мА диапазон напряжения составит 1,7-4,0 В, а типовое значение напряжения – 2,2 В.

Голубой оттенок диода позволяют получить бинарное соединение цинка и селена – селенид цинка (ZnSe) и нитрид индия-галлия InGaN. Для этого цвета при силе тока в 20 мА диапазон напряжения определяется в рамках 3,2-4,5 В, типовое значение напряжения составляет 3,6 В.

Для получения белого света используют синие или ультрафиолетовые диоды с покрытием из люминофора либо сочетание трех светодиодов основных цветов (красный, синий, зеленый). Их параметры напряжения при силе тока в 20 мА колеблются в пределах от 2,7 до 4,3 В, типовое значение напряжения соответствует 3,6 В.

Мощность потребления светодиодов. Данный параметр необходим для выбора блока питания электроприбора, оснащенного определенным количеством светодиодов.  У каждого светодиода она индивидуальна и колеблется в диапазоне от 0,5 до 3,0 Вт.

Цветовая температура светодиода. Эта характеристика измеряется в Кельвинах (К) и имеет несколько показателей. Основное разделение представлено такими оттенками свечения:

  • от 2700 К до 3500 К – теплый свет;
  • 3500-5300 К – нейтральный;
  • 5300-7000 К – холодное свечение.

Светоотдача и угол свечения светодиода. Яркость (интенсивность светового потока) светодиода прямо пропорциональна протекающему через него электрическому току, то есть чем напряжение будет выше, тем будет больше яркость светодиода. Единицей измерения светового потока служит люмен (лм).

Световая отдача источника света (светоотдача) – отношение излучаемого источником светового потока к потребляемой им мощности. Измеряется светоотдача в люменах на ватт (лм/Вт). Она является показателем эффективности и экономичности источников света.

Сила и угол светового потока светодиода могут варьироваться, т.к. имеют зависимость от формы и материала, выбранных для изготовления светового прибора. Однако величина угла не может превышать 120 градусов. Для увеличения угла рассеивания могут применяться специальные линзы и/или отражатели. Так, при правильном подборе подобных устройств, увеличить силу светового потока светодиода мощностью в 3 ватта возможно до 300-350 люменов.

Как работает светодиод

Светодиод является двухпроводным полупроводниковым источником света. Это p-n переходной диод, который излучает свет при активации. Когда к выводам приложено подходящее напряжение, электроны могут рекомбинировать с электронными отверстиями внутри устройства, выделяя энергию в виде фотонов. Этот эффект называется электролюминесценцией, а цвет света (соответствующий энергии фотона) определяется энергетической шириной запрещенной зоны полупроводника.

Материал, используемый в светодиодах, в основном алюминий-галлий-арсенид (AlGaAs). В своем первоначальном состоянии атомы этого материала прочно связаны. Без свободных электронов проводимость электричества здесь становится невозможной.

При добавлении примеси, которая известна как легирование, вводятся дополнительные атомы, что эффективно нарушает баланс материала.

Эти примеси в виде дополнительных атомов способны либо обеспечивать свободные электроны (N-тип) в системе, либо высасывать некоторые из уже существующих электронов из атомов (P-тип), создавая «дыры» на атомных орбитах. В обоих случаях материал становится более проводящим. Таким образом, под воздействием электрического тока в материале N-типа электроны могут перемещаться от анода (положительный) к катоду (отрицательный) и наоборот в материале P-типа. Из-за свойства полупроводника ток никогда не будет идти в противоположных направлениях в соответствующих случаях.

Интенсивность света, излучаемого светодиодом, будет зависеть от уровня энергии испускаемых фотонов, который, в свою очередь, будет зависеть от энергии, выделяемой электронами, прыгающими между атомными орбитами из полупроводникового материала.

В светодиодах вышеуказанные явления хорошо используются. В ответ на P-тип легирования электроны в светодиодах движутся, падая с верхних орбиталей на нижние, высвобождая энергию в виде фотонов, то есть света. Чем дальше эти орбитали отстоят друг от друга, тем больше интенсивность излучаемого света.

Различные длины волн, вовлеченные в процесс, определяют различные цвета, производимые светодиодами. Следовательно, свет, излучаемый устройством, зависит от типа используемого полупроводникового материала. Инфракрасный свет создается с использованием арсенида галлия (GaAs) в качестве полупроводника. Красный или желтый свет получают с использованием галлия-арсенида-фосфора (GaAsP) в качестве полупроводника. Красный или зеленый свет получается при использовании галлия-фосфора (GaP) в качестве полупроводника.

Цветовая маркировка.

Маркировка led в мире не стандартизирована. Изготовитель сам решает, что он будет обозначать на корпусе.

Светодиоды российского производства маркируются цветовым кодом. Он состоит из цветных кружочков или черточек. Примеры маркировки приведены ниже на рисунке.

Цветовая маркировка российских индикаторных светодиодов.

Рассмотрим маркировку известных мировых производителей.

Philips.

В качестве примера возьмем модель Luxeon Rebel. Она маркируется LXML-ABCD-EFGH. В этой аббревиатуре зашифровано следущее:

  • LXML – серия;
  • ABC – информация о свете:  как распределяется, цветовая температура;
  • D – величина тока;
  • E – запасная буква на будущие модели;
  • FGH – яркость (в люменах).

Cree.

Фирма предлагает обозначение SSSCCC-BD-0000-NNNNN, где:

  • SSS – серия;
  • CCC – описание цвета:
  • BD – индекс цветопередачи:
  • 0000 – код производителя;
  • NNNNN – индивидуальный номер по цветовой температуре и яркости. Стоит уточнить в техническом описании.

Типы используемых светодиодов

Дополнительно приспособления отличаются друг от друга по типу диодов, установленных в корпусе лампы.

Индикаторные светодиодные элементы считаются устаревшими и в быту встречаются крайне редко. Качество выдаваемого светопотока и общая безопасность этих изделий не дотягивает до принятых сегодня требований.

SMD-чипы относятся к самому распространенному и максимально широко используемому виду. Минимальный размер и слабый базовый нагрев рабочих элементов делают лампы-SMD наиболее привлекательными среди аналогов.

Их применение не имеет ограничений и допускается в любых системах и условиях.

Единственный минус диодов SMD-типа – это небольшой размер. Из-за этого монтировать их в лампочку нужно в большом количестве, а это не всегда удобно и целесообразно

Агрегаты, работающие на повышено мощных диодах в 1,3 и 5 Вт, в некоторых ситуациях бывают очень продуктивны.

Но высокий уровень нагрева в процессе эксплуатации и проблематичность организации корректного теплоотвода из маленького корпуса значительно снижают их популярность.

Если в лампочке возникнут какие-то проблемы, необязательно сразу же бежать в магазин и требовать обмена или возврата денег. Простые неполадки легко устраняются в домашних условиях даже мастерами, не имеющими большого опыта в работах такого плана

COB-диоды – это инновационная технология производства чипов. Развивают ее сейчас очень активно. За счет прямого монтажа диодов на плату в разы увеличивается теплоотводность, а общая надежность устройства повышается.

Благодаря усовершенствованной оптической системе светопоток распространяется более равномерно и создает в помещении приятное фоновое свечение.

Filament – прогрессивный вид чипа, изобретенный в 2013-2014 году группой ученых. Предназначается исключительно для освещения.

Полноценно используется для обустройства оригинальной и необычной декоративной подсветки бытовых и промышленных помещений разного назначения.

Лампочка с диодами филаментного типа имеет все полезные черты, свойственные LED-источникам. Она выглядит стильно и привлекательно, долго служит, потребляет минимальное количество энергии и осуществляет равномерное освещение помещения в радиусе 360°

Обеспечивает в комнате приятный для глаза человека спектр свечения, сходный по характеристикам с эффектом горения традиционной лампы накаливания. По этому параметру в разы превосходит аналогичные изделия SDM и COB типа.

В фирменных магазинах продается по разумной цене и считается практичным вариантом экономичного светоисточника.

Простая эксплуатация

Первая проблема, с которой столкнулись люди с появлением на рынке осветительных технологий ламп нового образца – утилизация. Как оказалось, некоторые разновидности новых лампочек нельзя разбивать.

Если одну из них разбить случайно, можно только порезаться, и то не всегда. Корпус у них более прочный, в сравнении с лампами накаливания. Обычно он сделан из пластика. Встречается и стеклянный корпус, но он более прочный. Это стандарт.

Лучшие светодиодные лампы от самых разных производителей, зарубежных и отечественных, гарантируют абсолютную безопасность.

Все они состоят из следующих деталей:

  • сделанный из пластика или поликарбоната рассеиватель лучей;
  • светодиоды;
  • алюминиевая плата, которая не даёт лампе нагреваться, направляя тепло к радиатору охлаждения;
  • небольшая конструкция из нескольких пластинок алюминия – радиатор охлаждения;
  • конденсатор напряжения;
  • небольшой стабилизатор напряжения, называемый драйвером;
  • цоколь из латуни с основанием из полимеров.

Конструкция сложная и простая одновременно. Этими лампами удобно пользоваться.

Разный дизайн позволяет создавать идеальную систему освещения

Фото светодиодных ламп убеждают в том, что будет найдена оптимальная форма, габариты. Колба может быть разных цветов. Свет может рассеиваться по-разному.

Семейное торжество, вечеринка пройдёт удачно, если приобрести специально лампы с интересным свечением, ярким, запоминающимся, сказочным.

Вечером намного легче будет отвлечься от хлопот, проблем, если в комнате горит необычного цвета лампочка. Зимой многим людям не хватает красок, цветов.

Атмосфера романтики, любви воцарится в спальне, гостиной, если включён светильник, торшер, бра с лампочкой LED с фиолетовым, голубым, розовым, зелёным или любым другим нестандартным свечением.

Зонирование пространства при помощи бра, торшеров, освещения с лучами разного цвета, наверняка улучшит настроение, подарит массу позитивных эмоций. Это то, что нужно для отдыха, восстановления душевной гармонии. Книгу, конечно, лучше читать, если вкручена обычная светодиодная лампа.

Установка светодиодных ламп – это шаг навстречу будущему, в котором нет места перенапряжению органов зрения, усталости вегетативной нервной системы.

Напряжение накапливается в течение дня, не замечается обычно, случайно игнорируется, может стать причиной ослабления иммунной системы. Покупка новой лампочки, светодиодной, улучшит качество жизни.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector