Схема и технология работы теплового насоса
Содержание:
- Как сделать насос своими руками
- Виды тепловых насосов
- Принцип работы насоса воздух-вода
- Расчет необходимой мощности теплового насоса
- Принцип работы теплового насоса для отопления частного дома: объясняем на пальцах
- Плюсы и минусы
- Тепловой насос из кондиционера
- Виды геотермальных установок
- Оборудование для объектов с большим потреблением тепла
- Хладагент
- Настало время предметно изучать зарубежный опыт
- Выводы и полезное видео по теме
Как сделать насос своими руками
ТН изготовить своими руками вполне реально, но для этого необходимо найти хороший компрессор. Его можно купить в магазине запасных частей или использовать от старого холодильника или кондиционера.
В качестве конденсатора используется бак из нержавейки — приблизительно на 100 литров. Для контура отлично подойдут тонкие медные сантехнические трубки.
Этапы изготовления:
- С помощью уголка закрепить компрессор к стене в месте, где будет размещаться ТН.
- Далее сделать змеевик из медных трубок: обмотать их вокруг подходящего цилиндра. Шаг намотки по змеевику должен быть одинаковым.
- Бак нужно разрезать на две половинки, внутрь вставить змеевик и заварить обратно. При этом в нем необходимо сделать несколько входных отверстий, через которые вывести трубки змеевика.
- В качестве испарителя можно использовать пластиковую бочку — в нее завести трубки внутреннего контура.
- Далее в схеме нужно создать избыточное давление для проверки герметичности.
Для транспортировки прогретой воды можно использовать обычные ПВХ-трубы (из поливинилхлорида). Заправку системы фреоном желательно сделать совместно со специалистом.
В видео ниже все о ТН системы «вода-вода»: принцип работы, типы, преимущества и недостатки, правилах монтажа.
Виды тепловых насосов
- воздух-воздух;
- воздух-вода;
- земля-вода;
- вода-вода.
Первое слово в этих сочетаниях означает внешнюю среду, от которой забирается энергия. Второе слово это вид теплоносителя, с помощью которого обеспечивается обогрев помещений.
Использование геотермальных и гидротермальных установок менее выгодно. Дело в том, что получение тепловой энергии от грунта или воды в водоемах требует увеличения затрат, на бурение скважины, обеспечение защиты опускаемой части системы от воздействия коррозии и заиливания. Отбор тепла из окружающего воздуха делает работу тепловых насосов более выгодной и обоснованной экономически, за счет быстрой окупаемости капитальных затрат. При этом срок эксплуатации оборудования в несколько раз больше.
Принцип работы насоса воздух-вода
Как уже было сказано, основным источником тепловой энергии для установок этого типа является атмосферный воздух. В принципиальной основе работы воздушных насосов лежит физическое свойство жидкостей к поглощению и отдаче тепла во время фазового перехода из жидкого состояния в газообразное, и обратно. В результате смены состояния выделяется температура. Система работает по принципу холодильника наоборот.
Для эффективного использования этих свойств жидкости легкокипящий хладагент (фреон, хладон) циркулирует по замкнутому контуру в конструкцию которого входят:
- компрессор с электроприводом;
- обдуваемый вентилятором испаритель;
- дроссельный (расширительный) клапан;
- пластинчатый теплообменник;
- медные или металлопластиковые циркуляционные трубки, соединяющие основные элементы схемы.
Движение хладагента по контуру осуществляется благодаря давлению, развиваемому компрессором. Для снижения тепловых потерь трубы покрываются теплоизоляционным слоем из искусственного каучука или вспененного полиэтилена с защитным металлизированным покрытием. В качестве хладагента используют хладон или фреон, способный закипать при отрицательной температуре и не замерзающий до -40°C.
Весь процесс работы состоит из следующих последовательных циклов:
- В радиаторе испарителя находится жидкий хладагент, температура которого ниже, чем у наружного воздуха. Во время активного обдува радиатора тепловая энергия от низко потенциального воздуха передается хладону, который закипает и переходит в газообразное состояние. При этом его температура повышается.
- Подогретый газ поступает в компрессор, где в процессе сжатия еще более нагревается.
- В сжатом и разогретом состоянии пары хладагента подаются в пластинчатый теплообменник, где по второму контуру циркулирует теплоноситель системы отопления. Поскольку температура теплоносителя значительно ниже, чем у разогретого газа, фреон активно конденсируется на пластинах теплообменника, отдавая тепло в систему отопления.
- Охлажденная парожидкостная смесь поступает на дроссельный клапан, который пропускает к испарителю только охлажденный жидкий хладагент с низким давлением. После чего весь цикл повторяется.
Для увеличения эффективности теплоотдачи трубки на испарителя навито спиральное оребрение. Расчет системы отопления, выбор циркуляционных насосов и другого оборудования должен учитывать гидравлическое сопротивление и коэффициент теплопередачи пластинчатого теплообменника установки.
Видео обзор устройства системы и ее работы
Инверторные тепловые насосы
Наличие инвертора в составе установки позволяет обеспечить плавный пуск оборудования и автоматическое регулирование режимов в зависимости от температуры наружного воздуха. Это позволяет максимально повысить эффективность работы теплового насоса за счет:
- достижения КПД на уровне 95-98%;
- снижения потребления энергии на 20-25%;
- минимизации нагрузок на электрическую сеть;
- увеличения сроков эксплуатации установки.
В результате температура внутри помещений стабильно поддерживается на одном уровне, не зависимо от изменения погоды. При этом наличие инвертора в комплекте с автоматизированным блоком управления обеспечит не только зимний обогрев, но и подачу охлажденного воздуха летом при жаркой погоде.
В то же время следует учесть, что наличие дополнительного оборудования всегда влечет за собой его удорожание и увеличение срока окупаемости.
Расчет необходимой мощности теплового насоса
Перед покупкой системы важно предварительно составить проект и вычислить необходимую мощность оборудования. Производительность высчитывается с учетом фактических потребностей в тепловой энергии
Берутся во внимание расходы тепла, теплопотери дома и наличие или отсутствие контура ГВС
Алгоритм расчета:
- Вычисляем общую площадь отапливаемых помещений.
- Определяемся с необходимым количеством энергии для отопления. Оптимальный показатель на 1 квадратный метр – 0,07 кВт.
- Чтобы протопить дом на N квадратных метров, понадобиться N*0,07 кВт.
- Для ГВС к полученному числу добавляют дополнительно 15-20%, то есть N*0,07*0,85 или N*0,07*0,80.
Это расчет будет оптимальным для помещений с потолками, не превышающими высоту 2,7 м. Более точные вычисления сделают специалисты во время составления проекта.
Принцип работы теплового насоса для отопления частного дома: объясняем на пальцах
Если отбросить все технические моменты — можно привести вам пример, который раз и на всегда поможет вам понять, как тепловой насос может отопить ваш дом, затратив при этом столь ничтожное количество электроэнергии. Представьте, что в системе отопления вашего частного дома: радиаторы батарей, трубы (внутренний контур) — залито 100 литров холодной воды с температурой 2 градуса по Цельсию. Вы укладываете на глубину около 2 метров под землей очень длинную пластиковую трубу, срок службы которой достигает 100 лет (внешний контур). В подземную трубу помещается примерно 1000 литров рабочей жидкости. Солнце круглый год греет нашу планету и разогревает её недра до температуры +7 +8 градусов по Цельсию. Итого мы имеем 1000 литров жидкости с температурой +7.5 градусов. Теперь в игру вступает сам тепловой котел, который как соковыжималка вытягивает из каждого литра рабочей жидкости по 7.5 градусов, давайте напишем формулу: 1000л. х 7.5 = 7500 градусов чистой энергии. Эта чистая энергия передается воде в самой системе отопления, в итоге получаем 100 литров воды с температурой 7500/100 =75 градусов, неплохо, да? Все основные затраты электроэнергии расходуются на два насоса, которые качают рабочую жидкость по системам внешнего (подземного) и внутреннего (внутридомового) контуров и компрессор, который создает давление. Получается, что основными рабочими лошадками являются насосы, отсюда и название самой системы — «Тепловой насос».
Но каким образом этому «Чудо-котлу» удается отбирать энергию и концентрировать её до гораздо более высокой температуры? Это очень просто, вы никогда не задумывались, как работает ваш холодильник или кондиционер? Может быть и кондиционер является для вас загадкой, но он работает и точно также будет работать и система отопления дома с тепловым насосом, это как холодильник наоборот. Схематично это можно представить в таком виде:
Применение тепловых насосов только набирает силу в Россию. Эти сведения только начинают распространяться в профессиональной строительной среде. Также информация о данных системах пока еще мало знакома российским потребителям. Однако, эта инновация уже получила широкое распространение и уже около тридцати лет такие конструкции применяются для теплоснабжения частных домов. Особое преимущество данным конструкциям придает тот факт, что они используют возобновляемые источники энергии. Такой подход предполагает разовые затраты на приобретение и монтаж системы, небольшие затраты на регулярное регламентное обслуживание и абсолютно бесплатные энергоносители
Это немаловажно в условиях стремительно растущих тарифов на любые типы энергии
Плюсы и минусы
Рассмотрим по отдельности три вида, которые чаще используют для отопления коттеджей, домов, дач и вообще любого частного жилья.
Воздушный тепловой насос: плюсы и минусы
Стоимость воздушных тепловых насосов ниже чем у других типов за счет простоты конструкции. По сути, это кондиционер, но имеющий высокую надежность, производительность и способный работать при экстремально низких и высоких температурах. Монтаж теплового насоса прост и не требует проведения сложных работ.
Чем холоднее на улице, тем ниже эффективность (КПД). При очень низких температурах (в зависимости от модели и производителя) перестает вырабатывать тепло. Есть модели, способные работать и при -35, но они слишком дороги.
Тепловой насос воздух-воздух, это тот же кондиционер. Но его стоимость выше, ведь он нормально функционирует при низких температурах. Например, средней руки кондиционер не будет эффективно работать на обогрев при 0 градусов, а тепловой насос сможет не только обогревать помещение, но и позволит сэкономить.
Еще одно отличие – воздушный теплонасос имеет большую производительность и лучший КПД, чем любой из кондиционеров.
Существуют модели тепловых насосов воздух-воздух, способные работать на охлаждение. Установка такой техники поможет сэкономить на кондиционере.
Внутренний блок воздушного теплового насоса очень похож на внутренний блок кондиционера.
Водяные тепловые насосы: за и против
Температура в водоеме стабильная на протяжении года, поэтому эффективность работы не зависит от погодных условий. Для отбора термальной энергии из озера, пруда или реки нужно укладывать трубопровод (поле), но это несложный процесс.
За счет погружаемого в воду поля и прокладки магистрали между ним и испарителем стоимость оборудования и монтажа удорожается. Чем дальше от теплового насоса находится водоем, тем выше энергопотери и ниже КПД.
И, конечно, основной минус – необходимо наличие водоема.
Не каждый водоем может быть использован в качестве источника тепла для теплового насоса вода-вода или вода-воздух. Если объем воды небольшой, то она будет переохлаждаться и на трубопроводах образуется наледь. Она будет своеобразной «шубой», которая не позволит эффективно получать тепло.
Идеальный вариант – устанавливать поле в проточной воде, тогда можно не беспокоиться о температуре. Но не у всех есть река рядом с домом или дачей.
Идеальное месть для установки водяного теплового насоса
Плюсы и минусы тепловых насосов грунтового типа
На уровне ниже 1-1,5 метра под поверхностью земли температура не меняется на протяжении года. Поэтому производительность оборудования не зависит от того, лето на дворе или зима. На глубине почва прогрета лучше, чем в водоемах зимой, поэтому КПД грунтовых тепловых насосов выше, чем водяных.
Для прокладки труб нужно бурить скважины, либо укладывать трубопровод горизонтально. Это существенно удорожает процесс монтажа по сравнению с водяными тепловыми насосами. Что касается стоимости оборудования – она сравнима с последними.
Большую опасность для грунтового теплового насоса представляет неправильный расчет мощности. Если потребление тепла из земли будет высоким, а площадь поля или глубина и количество скважин – небольшими, почва начнет промерзать. Так как в грунте содержится влага, она образует ледяной кокон и доступ тепла прекратится.
Процесс эксплуатации грунтовых установок отличается в каждом отдельном случае. Геотермальный тепловой имеет свои насос за и против в зависимости от многих факторов, таких как:
- Тип установки теплообменника;
- Мощность теплового насоса;
- Необходимая температура теплоносителя или воды;
- Требуемая тепловая мощность;
- Сложность грунтов;
- Близость грунтовых вод;
- Климат региона.
Так происходит укладка горизонтального поля для грунтового теплового насоса.
Тепловой насос из кондиционера
Современные сплит-системы, особенно инверторного типа, успешно выполняют функции того же теплового насоса воздух – воздух. Их проблема в том, что эффективность работы падает вместе с наружной температурой, не спасает даже так называемый зимний комплект.
Домашние умельцы подошли к вопросу иначе: собрали самодельный тепловой насос из кондиционера, отбирающий теплоту проточной воды из скважины. По сути, от кондиционера тут используется только компрессор, иногда – внутренний блок, играющий роль фанкойла.
По большому счету, компрессор можно приобрести отдельно. К нему потребуется сделать теплообменник для нагрева воды (конденсатор). Медная трубка с толщиной стенки 1—1.2 мм длиной 35 м наматывается для придания формы змеевика на трубу диаметром 350—400 мм или баллон. После чего витки фиксируются перфорированным уголком, а затем вся конструкция помещается в стальную емкость с патрубками для воды.
Компрессор из сплит-системы присоединяется к нижнему вводу в конденсатор, а к верхнему подключается регулирующий клапан. Таким же образом изготавливается испаритель, для него сгодится обычная пластиковая бочка. Кстати, вместо самодельных емкостных теплообменников можно использовать заводские пластинчатые, но это обойдется недешево.
Сама по себе сборка насоса не слишком сложна, но здесь важно уметь правильно и качественно пропаивать соединения медных трубок. Также для заправки системы фреоном потребуются услуги мастера, не станете же вы специально покупать дополнительное оборудование
Дальше – этап наладки и пуска теплового насоса, который далеко не всегда проходит удачно. Возможно, придется немало повозиться, чтобы добиться результата.
https://youtube.com/watch?v=2pEnKfMgf7g
Виды геотермальных установок
Принцип работы геотермального отопления дома мы рассмотрели, теперь разберемся, какие существуют разновидности тепловых установок. Они разливаются по виду используемых теплоносителей и среды, в которую погружены контуры.
Принцип работы, устройство и ремонт циркуляционного теплового насоса
Земля-вода
Этот тип насосов отбирает тепловую энергию у почвы и передает ее воде в отопительной системе дома. Для отбора тепла используются коллекторы или зонды.
Внешний контур для получения тепла из земли может быть размещен вертикально и горизонтально. В первом случае обеспечивается постоянная положительная температура на дне скважины, но чтобы ее пробурить, понадобится специальное оборудование. Для устройства вертикального теплообменника нужно бурить скважину диаметром 150 мм на глубину 50-200 м.
Во втором случае трубы контура укладываются горизонтально на 1 м глубже поверхности, поэтому котлованы можно вырыть собственноручно. Но из-за значительной протяженности контура горизонтальные контуры применяют только на больших придомовых участках.
Важно! Площадь горизонтального внешнего контура должна в три раза превышать отапливаемую площадь дома
Вода-вода
Обычно используют теплообменник, который уложен на дне водоема, расположенного на расстоянии не более 100 м от дома. Подойдут только естественные водоемы – пруды, озера. Для укладки труб в реку нужно получать разрешение. Главное требование – глубина водоема не может быть меньше 3-х метров.
Вместо водоема тепло воды можно получать из артезианской скважины. Добытая вода пропускается через тепловой насос. Однако откачанную воду нужно сбрасывать обратно в грунт, поэтому делают вторую скважину. Благодаря этому поддерживается постоянное давление в земном пласте.
Воздух-вода
Для работы оборудования понадобятся испарители и вентиляторы. Наибольшая эффективность работы достигается при температуре окружающего воздуха не ниже -15°С. Если температурные показатели опускаются ниже, теряется часть мощности.
Преимущество станций заключается в простоте монтажа. Не нужно рыть котлованы или бурить скважины. Всю конструкцию можно расположить на крыше дома. Оборудование работает бесшумно и может повторно использовать тепло, выходящее из помещений.
Оборудование для объектов с большим потреблением тепла
Для полного обеспечения потребностей в тепловой энергии жилых и коммерческих зданий, площадью более 200 м². Дистанционное управление, каскадная эксплуатация, взаимодействие с рекуператорами и гелиосистемами – расширяют возможности пользователя в создании комфортной температуры.
8. WATERKOTTE EcoTouch DS 5027.5 Ai (Германия) – от 708 521 руб.
Модификация DS 5027.5 Ai – самая мощная в линейке EcoTouch. Стабильно прогревает теплоноситель отопительного контура и обеспечивает тепловой энергией систему ГВС в помещениях до 280 м².
Спиральный (самый производительный из существующих) компрессор; регулировка скорости потока теплоносителя позволяет получить стабильные показатели температуры на выходе; цветной дисплей; русифицированное меню; аккуратный внешний вид и низкий уровень шума. Каждая деталь для комфортной эксплуатации.
При активном пользовании точками водоразбора включаются тэны, из-за чего энергопотребление увеличивается на 6 кВт/ч.
Характеристика | Значение |
---|---|
Схема работы | Рассол-вода |
Тепловая мощность, кВт | 26 /19.6 |
Потребляемая электроэнергия (сеть, V/насосы, компрессор/тэны), кВт/ч | 380 / 4.3 / 6 |
Температура теплоносителя на выходе, °С | 65 |
Диапазон рабочей температуры первичного контура, °С | 0… +35 |
Хладагент, тип | R410A |
Вес, кг | 183 |
9. DANFOSS DHP-R ECO 42 (Швеция) – от 1 180 453 руб.
Достаточно мощное оборудование для того чтобы обеспечить тепловой энергией систему горячего водоснабжения и отопительные контуры многоуровневого коттеджа с постоянным проживанием.
Вместо дополнительного обогревателя для ГВС, здесь задействован поток горячей воды с подачи отопительного контура. Пропуская уже горячую воду через пароохладитель, тепловой насос разогревает воду в дополнительном теплообменнике ГВС до 90 °С. Стабильная температура в СО и баке ГВС поддерживается за счёт автоматической регулировки скорости циркуляционных насосов. Подходит для каскадного подключения (до 8 ТН).
Нет тэнов для отопительного контура. Дополнительные ресурсы отбираются у любого сочетаемого котла – блок управления возьмет от него столько тепла, сколько требуется в конкретном случае.
При расчёте места под монтаж теплового насоса необходимо оставлять зазор в 300 мм между стеной и задней поверхностью устройства (для удобства контроля и обслуживания коммуникаций).
Характеристика | Значение |
---|---|
Схема работы | Рассол — вода |
Тепловая мощность, кВт | 41.4 |
Потребляемая электроэнергия (сеть, V/насосы, компрессор), кВт/ч | 380 / 9.6 |
Температура теплоносителя на выходе, °С | 65 |
Диапазон рабочей температуры первичного контура, °С | -10… +20 |
Хладагент, тип | R410A |
Вес, кг | 290 |
10. Viessmann Vitocal 300-G WWC 110 (Германия) – от 630 125 руб.
В роли теплоносителя первого контура – грунтовые воды. Отсюда и постоянная температура на первом теплообменнике, и самый высокий коэффициент СОР.
Среди плюсов — вспомогательный электронагреватель небольшой мощности на первом контуре и фирменный контроллер (по сути – беспроводной пульт) для удалённого управления.
Минус — работоспособность циркуляционного насоса, состояние магистрали и теплообменника первого контура зависит от качества перегоняемых грунтовых вод. Фильтрация обязательна.
Исключить появление сложно решаемых проблем с дорогостоящим оборудованием, поможет анализ грунтовых вод. Который следует сделать до покупки теплового насоса системы «вода-вода».
Характеристика | Значение |
---|---|
Схема работы | Вода — вода |
Тепловая мощность, кВт | 13.6 |
Потребляемая электроэнергия (сеть, V/насосы, компрессор/тэны), кВт/ч | 400 / 2.3 / 9 |
Температура теплоносителя на выходе, °С | 60 |
Диапазон рабочей температуры первичного контура, °С | 0… +35 |
Хладагент, тип | R 407 C |
Вес, кг | 152 |
Хладагент
В ТН очень редко применяется фреон марки R22, который отличается низкой ценой и рабочим давлением, а также однородным составом (облегчает дозаправку системы при утечках). Недостаток – опасность для озонового слоя.
Менее токсичный хладагент марки R134A при аналогичной однородности более прихотлив к условиям эксплуатации, в частности, требует использования полиэфирных масел.
Хладагенты марок R407C и R410A – самые безопасные для окружающей среды. Но из-за высокого рабочего давления такие фреоны применяются в дорогой технике, да и сами обходятся недешево. R410A выгодно отличается от R407C однородностью состава. А вот R407C при утечке заменяется полностью.
Настало время предметно изучать зарубежный опыт
О тепловых насосах, способных отобрать тепло окружающей среды для отопления зданий, теперь уже знают почти все, и, если еще недавно потенциальный заказчик, как правило, задавал недоуменный вопрос «как это возможно?», то теперь все чаще звучит вопрос «как это правильно сделать?».
Ответить на этот вопрос непросто.
В поисках ответа на многочисленные вопросы, которые неизбежно возникают при попытке проектировать системы отопления с тепловыми насосами, целесообразно обратиться к опыту специалистов тех стран, где тепловые насосы на грунтовых теплообменниках применяются уже давно.
Посещение* американской выставки AHR ЕХРО-2008, которое было предпринято, главным образом, с целью получения информации о методах инженерных расчетов грунтовых теплообменников, прямых результатов в этом направлении не принесло, но на выставочном стенде ASHRAE продавалась книга , некоторые положения которой послужили основой для этой публикации.
Следует сразу сказать, что перенос американской методики на отечественную почву – дело непростое. У американцев все не так, как принято в Европе. Только время они измеряют в тех же единицах, что и мы. Все остальные единицы измерения – чисто американские, а точнее – британские. Особенно не повезло американцам с тепловым потоком, который может измеряться как в британских тепловых единицах, отнесенных к единице времени, так и в тоннах охлаждения, которые придуманы, вероятно, в Америке.
Главная проблема, однако, состояла не в техническом неудобстве пересчета принятых в США единиц измерения, к которым со временем можно и привыкнуть, а в отсутствии в упомянутой книге четкой методической основы построения алгоритма вычислений. Рутинным и широко известным расчетным приемам там уделяется слишком много места, в то время как некоторые важные положения остаются вовсе нераскрытыми.
В частности, такими физически связанными исходными данными для расчета вертикальных грунтовых теплообменников, как температура циркулирующей в теплообменнике жидкости и коэффициент преобразования теплового насоса, нельзя задаваться произвольно, и, прежде чем приступать к вычислениям, связанным с нестационарным теплообменом в грунте, необходимо определить зависимости, связывающие эти параметры.
Критерием эффективности теплового насоса служит коэффициент преобразования ?, величина которого определяется отношением его тепловой мощности к мощности электропривода компрессора. Эта величина является функцией температур кипения в испарителе tu и конденсации tk, а применительно к тепловым насосам «вода-вода» можно говорить о температурах жидкости на выходе из испарителя t2И и на выходе из конденсатора t2K:
? = ?(t2И,t2K). (1)
Анализ каталожных характеристик серийных холодильных машин и тепловых насосов «вода-вода» позволил отобразить эту функцию в виде диаграммы (рис. 1).
При помощи диаграммы нетрудно определиться с параметрами теплового насоса на самых начальных стадиях проектирования. Очевидно, например, что, если система отопления, присоединенная к тепловому насосу, рассчитана на подачу теплоносителя с температурой в подающем трубопроводе 50°C, то максимально возможный коэффициент преобразования теплового насоса будет около 3,5. При этом температура гликоля на выходе из испарителя не должна быть ниже +3°С, а это означает, что потребуется дорогой грунтовый теплообменник.
В то же время, если дом обогревается посредством теплого пола, из конденсатора теплового насоса будет поступать в систему отопления теплоноситель с температурой 35°С. В этом случае тепловой насос сможет работать более эффективно, например, с коэффициентом преобразования 4,3, если температура охлажденного в испарителе гликоля будет около –2°С.
Пользуясь электронными таблицами Excel, можно выразить функцию (1) в виде уравнения:
? = 0,1729 • (41,5 + t2И – 0,015t2И • t2K – 0,437 • t2K (2)
Если при желаемом коэффициенте преобразования и заданном значении температуры теплоносителя в системе отопления, работающей от теплового насоса, нужно определить температуру охлажденной в испарителе жидкости, то уравнение (2) можно представить в виде:
(3)
Выбрать температуру теплоносителя в системе отопления при заданных величинах коэффициента преобразования теплового насоса и температуры жидкости на выходе из испарителя можно по формуле:
(4)
В формулах (2)…(4) температуры выражены в градусах Цельсия.
Определив эти зависимости, можно теперь перейти непосредственно к американскому опыту.
Выводы и полезное видео по теме
В ролике наглядно показано, как в большом доме из газосиликатного блока обустроена отопительная система на основе геотермального теплового оборудования «воздух-вода». Раскрыты некоторые интересные нюансы относительно монтажа оборудования и озвучены реальные цифры коммунальных платежей за месяц.
Как работает оборудование «земля-вода». Подробное описание от специалиста по установке геотермальных тепловых котлов, рекомендации и полезные советы для домашних мастеров от профессионала своего дела.
Своими впечатлениями о тепловом геотермальном насосе делится реальный пользователь оборудования.
Профессиональный слесарь рассказывает, как в домашних условиях изготовить тепловой насос на основе мощного компрессора и трубчатых теплообменных деталей. Подробная инструкция в пошаговом режиме.
Геотермальный насос для отопления частного домовладения – удачный способ создания комфортных жизненных условий даже там, где недоступны централизованные коммуникационные системы и более привычные источники энергетического ресурса.
Выбор системы зависит от территориального расположения недвижимости и финансовых возможностей хозяев.
Имеете опыт изготовления геотермального теплового насоса? Пожалуйста, поделитесь информацией с нашими читателями, предложите свой вариант сборки. Оставлять комментарии и прикреплять фотографии своих самоделок можно в форме, расположенной ниже.