Понятие заземления и заземляющего контура

Содержание:

Устройство штыревого заземления

Основной составляющей этого типа заземления является вертикальный составной электрод из стали. Отдельные элементы представляют собой стальные штыри, с обмеднением по внешней поверхности. На обоих концах штыря размещена резьба, которая служит для соединения штырей между собой и для накручивания наконечника на начальный.

Соединение штырей заземления между собой подлежит дополнительной обработке. Перед установкой штыря на резьбу наносится токопроводящая смазка, после чего на нее накручивают острие и насадку для вибромолотка. После чего штырь для заземления вбивается в почву, насадка скручивается и переносится на следующий штырь. Он с помощью муфты накручивается на уже вбитый. Обязательно нанесение на резьбовые поверхности токопроводящей смазки. Таким образом, электрод наращивается до нужной глубины. В процессе наращивания необходимо контролировать его сопротивление. Контроль осуществляется использованием специальной аппаратуры, предназначенной для замера сопротивления.

По окончанию забивки на концевую резьбу последнего элемента одевается так называемый сжим, который служит для фиксации токоотводящего кабеля к ГЗШ. Он, как правило, выполнен из нержавеющей стали.

Реже  для соединения применяется разъёмное соединение «в штырь», сварка для соединения электродов не применяется, в ответ нагреву вызывается обгорание гальванопокрытия.

Модульная система безопасности требует для своей установки небольшую площадь, кроме того может осуществляться одним человеком. Повторное заземление служит наиболее частым типом использования этой системы.

Функции искусственного заземляющего элемента

Согласно пункту ПУЭ 1.7.28, заземление должно быть организованно для всех видов промышленных и бытовых электроустановок. Необходимость установки аргументирована практической значимостью функций системы. Каждой части заземляющего устройства отведена своя задача.

Проводящий элемент или совокупность соединенных между собой аналогичных элементов заземляющего устройства играют важную роль в надлежащей работе всей системы заземления объекта.

Существует две основных функции заземления, которые реализуются при помощи искусственного заземлителя:

  1. Обеспечение электрической безопасности пользователям электроустановки. Основные задачи защитной функции — уменьшение показателей разности потенциалов, отвод блуждающего тока. Ток утечки образуется при взаимодействии заземляющего предмета с фазным кабелем.
  2. Поддержка эффективной и бесперебойной работы как электрического оборудования, так и всей электроустановки.

Искусственный заземлитель имеет ряд требований, реализация которых позволит добиться надлежащего результата выполнения функций. Основа — надежный монтаж и оптимальное расположение в грунте заземляющего элемента.

Конструкция заземления

Рабочее заземление представляет собой вбитые в землю железные штыри, играющие роль проводников, на глубину около 2-3 метров.

Такие металлические прутья соединяют заземлительные клеммы электрооборудования с шиной заземления, тем самым образуя металлосвязь.

Металлосвязь есть в каждом жилом доме. Это сварная железная конструкция, которая соединяет друг с другом верхние концы заземлителей. Её заводят к вводному щитку дома для дальнейшей разводки по квартирам.

В качестве заземляющего проводника используют шину или провод с сечением не менее 4 кв. мм, окрашенные в жёлтые и зелёные полосы. Кабель в основном используют для переноса функционального заземления от шины к шине.

В целях безопасности проводится периодическая проверка электронного сопротивления металлической связи заземления. Оно измеряется от клеммы заземления электроустановки до наиболее удалённого от неё наземного контура заземления. Показатель сопротивления в любой части рабочего заземления не должен превышать 0,1 Ом.

Заземление посредством железобетонного фундамента

Выбор такой конструкции в качестве заземлителя можно осуществить лишь при соответствии физических основ фундамента (гидрофильность бетона) с количественными показателями влажности грунта.

Допускается реализация такого технологического варианта заземления только при условии наличия влажности грунта, на котором находится объект, свыше 3 %. Меньший показатель такой характеристики почвы отразится на гидрофильности бетона: произойдет мощное электрическое сопротивление, железобетонная конструкция потеряет свойства заземлителя.

Естественный заземлитель посредством железобетонного фундамента практичнее применять при таких условиях:

  • наличие неагрессивной среды (грунтовые воды с минимальным показателем жесткости);
  • отсутствие гидроизоляции;
  • наличие дополнительной защиты фундамента (битумное покрытие).

Нормативная стандартизация применения такого типа заземлителя предусматривает варианты, когда его запрещено использовать в системе заземления объекта.

Типы и конструкции заземления

В частных домах требования ПУЭ допускают использование различных типов заземлений. В конструкцию обычного контура входят вертикальные электроды и одна горизонтальная перемычка. Все элементы должны быть одного размера и с круглым сечением в разрезе. Обычно они изготавливаются из толстой арматуры, труб или стальных прутьев.

Классической фигурой является контур заземления с конфигурацией треугольник, состоящий из арматурных прутьев в количестве 3 штук, размером 2 метра и более. Чем больше расстояние между прутками, тем эффективнее будет работать система. Минимальная дистанция составляет 1,5 м.

После того как электроды забиты в грунт, они соединяются между собой. На каждую сторону устанавливается отдельная полоса, закрепляемая на одной и той же высоте. Это и есть медные или стальные горизонтальные заземлители устанавливаемые на верхнюю часть штырей.

Место для установки контура в частном доме выбирается там, куда люди заходят очень редко. Предпочтение отдается северной стороне, которая плохо освещается и способствует сохранению в почве большого количества влаги. Расстояние от контура до стены дома должно быть не менее 1 метра.

В другом варианте заземление имеет конструкцию глубинного типа. В нем практически отсутствуют минусы, характерные для обычного способа, поскольку используется модульно-штыревая система. Весь комплект для сборки, сделанный на заводе, в техническом плане подтверждается сертификатом. Основным преимуществом данных систем является их соответствие нормативам, они отличаются повышенным сроком службы – от 30 лет и выше.

Электрический заряд стабильно растекается, независимо от погодных условий. Глубина залегания электродов достигает 30 метров, обеспечивая качество и надежность заземления, а вся собранная схема не требует постоянных проверок.

Разновидности вертикальных заземлителей

Распространены следующие виды вертикальных заземлителей:

  • традиционный;
  • модульный;
  • гибкий;
  • бесконтактный;
  • для засушливых регионов.

Традиционный

Самый простой вариант. Отрезки стального проката длиной до 5 м вколачивают в землю кувалдой или специальным электроинструментом.

Для изготовления электродов используются:

  • уголок: минимальная толщина полки — 4 мм;
  • полоса: минимальная толщина — 4 мм, минимальное сечение — 48 кв. мм;
  • труба: минимальная толщина стенки — 3,5 мм;
  • прут: минимальный диаметр — 10 мм, оцинкованного — 6 мм.

Заземлитель молниеотвода

Минимальное сечение электродов и подводящих шин для заземлителей молниезащиты составляет 160 кв. мм.

Круглые электроды наиболее предпочтительны, поскольку:

  • при том же сечении имеют меньшую площадь поверхности, потому меньше ржавеют;
  • легче вбиваются в грунт;
  • требуют в 1,5 раза меньших затрат стали и обходятся в 1,75 раза дешевле прочих разновидностей.

Недостаток традиционного заземлителя: глубина залегания относительно невелика.

Модульный (наращиваемый)

Используются круглые стержни, снабженные конструктивными элементами для прочного соединения. По мере погружения в грунт электрод наращивается, что позволяет достигать любой глубины.

Достоинства модульного заземлителя:

  1. Высокая эффективность, обусловленная значительной глубиной погружения: чтобы обеспечить сопротивление в 2 Ома достаточно 1-го электрода длиной 12 м, тогда как 3-метровых для этого требуется 15 м и более.
  2. Компактность: заземлитель занимает мало места на поверхности участка.
  3. Долговечность: модули имеют коррозионноустойчивое медное или цинковое покрытие.

Параметры модулей:

  • диаметр: 12 – 25 мм;
  • длина: 1,2 – 5 м.

Применяются разные способы соединения секций:

  • резьбовыми муфтами;
  • резьбовое без муфты (стержни навинчиваются один на другой);
  • муфтой без резьбы;
  • фрикционный метод: один стержень заклинивается в другом.

При выборе модульного заземлителя внимание обращают на характеристики покрытия:

  • толщина;
  • адгезия: подразумевается сила сцепления покрытия с основным материалом, препятствующая его соскальзыванию в процессе внедрения в грунт.

Гибкий

Электрод изготовлен в виде тонкостенной трубы из нержавеющей стали (толщина стенки составляет 1 – 2 мм) с находящимся внутри сердечником из полужесткого пластичного материала.

Он хорошо переносит процесс забивания, но при попадании на препятствие в грунте (камень и пр.) изгибается и обходит его. Наконечник делают закругленным, чтобы он лучше соскальзывал с препятствия.

Стандартный диаметр стальной трубы — 15 мм. Диаметр «начинки» из пластичного материала больше, за счет чего она после запрессовывания в трубу удерживает последнюю от смятия.

Другой способ изготовления упругого сердечника — заливка в трубу эпоксидной смолы, какого-нибудь эластомера или полиуретана. При отвердении эти материалы стремятся увеличиться в объеме, чем и обеспечивается требуемый натяг.

Выгоды от использования электродов данного типа:

  • возможность обходить твердые включения в грунте;
  • уменьшение затрат стали.

Бесконтактный

При конструировании этого заземлителя преследовалась цель исключить контакт металлического электрода со средой грунта, вызывающей электролитическое растворение металла.

Бесконтактный заземлитель сооружается так:

  1. В грунте бурят скважину.
  2. Вставляют в горловину скважины трубу из гетинакса или иного изолятора, так чтобы она располагалась выше уровня земли.
  3. Засыпают в скважину и трубу токопроводящую засыпку.
  4. Внедряют в засыпку металлический электрод такой длины, чтобы его нижний конец был выше поверхности земли.
  5. Кладут на засыпку тяжелый диск с отверстием для электрода, компенсирующий усадку засыпки и поддерживающий таким образом ее плотность и хороший контакт с электродом.

При таком подходе срок службы электрода увеличивается в 5 – 10 раз. Особенно уместно данное решение в зонах с агрессивными грунтами.

Для засушливых регионов

В грунте устраивается железобетонная емкость с люком вверху для заполнения водой. К низу емкости подсоединяют сеть из стальных труб с отверстиями в стенках для истечения воды, выполненными с определенным шагом. Эти трубы покрываются материалом, впитывающим влагу, например, бетоном или цементом.

Марку раствора необходимо подобрать так, чтобы добиться оптимальной скорости фильтрации влаги в грунт. Тогда воду в заземлитель придется заливать реже. Подключение заземляемого элемента осуществляется к арматурному каркасу ж/б емкости.

Функции искусственного заземляющего элемента

Согласно пункту ПУЭ 1.7.28, заземление должно быть организованно для всех видов промышленных и бытовых электроустановок. Необходимость установки аргументирована практической значимостью функций системы. Каждой части заземляющего устройства отведена своя задача.

Проводящий элемент или совокупность соединенных между собой аналогичных элементов заземляющего устройства играют важную роль в надлежащей работе всей системы заземления объекта.

Существует две основных функции заземления, которые реализуются при помощи искусственного заземлителя:

  1. Обеспечение электрической безопасности пользователям электроустановки. Основные задачи защитной функции — уменьшение показателей разности потенциалов, отвод блуждающего тока. Ток утечки образуется при взаимодействии заземляющего предмета с фазным кабелем.
  2. Поддержка эффективной и бесперебойной работы как электрического оборудования, так и всей электроустановки.

Искусственный заземлитель имеет ряд требований, реализация которых позволит добиться надлежащего результата выполнения функций. Основа — надежный монтаж и оптимальное расположение в грунте заземляющего элемента.

Основные требования

Большая часть профильных рекомендаций и правил регламентирует конструкцию и размещение такой составной части заземляющей системы. Требования, которым должен соответствовать искусственный заземлитель:

  1. Для засушливых территорий существует отдельная технология производства заземления с применением железобетонных конструкций.
  2. Искусственный заземлитель не подлежит окраске. Объясняется тем, что любое окрашивание выполняет роль изолятора. Изоляция будет препятствовать протеканию тока в почву. Искусственный заземлитель должен иметь естественный цвет.
  3. Окраске подлежат сварочные швы (соединения проводников). Окрашиваются битумной краской, предотвращается преждевременное разрушение соединительных элементов.
  4. Нестандартные (уменьшенные) значения электродов применяются исключительно при установке временных электроустановок.

Оптимальным выбором материала заземлителя считается круглая арматура. Обоснование такого приоритета:

  1. Минимальный расход металла. Следовательно, снижается себестоимость заземляющего устройства.
  2. Коррозионная стойкость у такого электрода значительно выше, чем у его аналогов.
  3. Легкость монтажа.

Помимо профильных требований, существует рекомендационная стандартизация параметров (размеров) материала, используемого для создания искусственного заземляющего элемента.

Правила обслуживания

Уход и обслуживание электрода не приносит много хлопот, так как не представляет ничего сложного. Заключается уход в следующем: один раз на несколько лет необходимо открывать крышку электрода, а также определять уровень солевой смеси в конструкции. В случае полного превращения смеси в электролит, в электролитическое заземление следует засыпать еще необходимое количество соли.

В этом заключается вся суть обслуживания. Электрод способен зарядиться на много лет (до 15 лет службы). Поэтому проводить первый осмотр рекомендуется через данный промежуток времени.

Напоследок рекомендуем просмотреть видео, на которых наглядно демонстрируется, как сделать электролитическое заземление своими руками:

Вот мы и рассмотрели устройство, назначение и правила монтажа электролитического заземления. Надеемся, предоставленная инструкция была для вас полезной и интересной!

Наверняка вы не знаете:

Виды заземления и их назначение

Рассмотрим виды заземления в электроустановках с их основными чертами в таблице.

Типы и подтипы заземления Особенности
TN популярнейший тип заземляющей системы, являющий собой комплекс из штырей, вертикально вбитых в землю до водоносного горизонта на глубину свыше 2,5 м; штыри объединены кабелем (полосой) в общий заземляющий контур для жилого здания; альтернативное название — глухозаземленная нейтраль, т. е. ноль совмещен с землей по всей длине
TN-C дешевый, но устаревший вариант с высоким риском опасности: рабочий нуль N одновременно является защитным проводом PE, поэтому при обрыве N-проводника весь потенциал перейдет на электрическое оборудование, что может привести к возгоранию или поражению током
TN-S в новых строительных проектах принимают эту подсистему, поскольку она наиболее надежная, и в тоже время дорогая (требует дополнительного проводника от подстанции к энергопотребителю); конструктивно в TN-S входят отдельный фазный провод, нейтраль N и защитный проводник PE (последние два проводника — отдельные компоненты, начиная с подстанции с глухозаземленной нейтралью)
TN-C-S это комплекс плюсов описанных выше подсистем; очень просто реализуется при реконструкции старых видов заземления нейтрали; конструктивно состоит из системы TN-C (до главного распределительного щита), а дальше нейтральный провод PEN расходится на N-проводник и защитный PE; и уже дальше организовывается подсистема TN-S; минус — образуется полное напряжение в системе при обрыве PEN-шины, проблема решается установкой защитных реле напряжения
TT электропитание идет по фазным проводам от источников с глухозаземленной нейтралью, заземление обустраивается прямо у потребителя; в обязательном порядке требуется подключение УЗО
IT IT-система не использует глухозаземленную нейтраль, нуль источника подключается через спецустройство с большим внутренним сопротивлением, у потребителя при этом устанавливается дополнительно устройство ноля и защитного заземления (см. главу 1.7 ПУЭ); метод заземления IT создает минимальные помехи

Кратко резюмируем виды заземления и их назначение:

IT-система снабжения подходит для специальных лабораторий;
TT-система актуальна для подключения временных объектов или мобильных сооружений, к примеру, на стройке;
подсистема TN-C-S чаще всего выбирается при реконструкции старых зданий;
TN-S — при проектировании новых строительных объектов;
TN-C обнаруживается преимущественно в старом жилом фонде и в настоящее время не используется ввиду высоких рисков пожарной опасности и удара электрическим током;
TN-система оптимально пригодна для жилых домов (обращайте внимание на современные подсистемы из этой категории).

Главные особенности

При обустройстве системы заземления необходимо соединение с грозозащитой здания. С ее помощью полностью исключается возможное воздействие на сырье, транспортируемое внутри.

Это особенно актуально в случаях, когда внутри находится взрывоопасное вещество – газ, нефть, спирт и другие легковоспламеняющиеся материалы.

Чтобы заземлить трубопровод, необходимо присоединить токоотводящую полосу к заземленному металлическому предмету. Для этого применяется медная проволока, поскольку медь считается отличным проводником. На каждые двадцать метров делают как минимум одно заземление.

Если магистраль собрали из бумажно-металлической трубы, металлические оболочки надо соединить между собой, а также с корпусами ящиков, электроприемников или коробок.

При выполнении работ потребуются перемычки, выполненные из голого медного проводника с хорошим запасом гибкости.

Специалисты рекомендуют пользоваться проводниками, сечение которых составляет минимум 2,5 м кв

Причем экономить в этом отношении нельзя, даже обращая внимание на высокую стоимость меди. Достаточно закрепить его на каждом конце труб посредством проволочного бандажа, либо припаяв отвод к корпусу и самой трубе с помощью паяльника

Элементы искусственного контура

Несмотря на то что естественные и искусственные заземлители выполняют одинаковую функцию, заключающуюся в защите от поражения электрическим током, использование первых не всегда оказывается целесообразным. Установка искусственной конструкции необходима, когда:

  1. Она является единственно возможной.
  2. Естественный контур не выдерживает токовых нагрузок.

И в том, и в другом случае оптимальным решением является создание искусственной заземлительной системы с проведением предварительных расчётов. В процессе таких расчётов определяется форма, размер контура и материал, из которого будут выполнены электроды. В качестве основы для них обычно используют сталь, которая имеет покрытие:

  • Из цинка. Обеспечивает устойчивость к действию коррозии и кислотной среды. Детали из такого материала отличаются низким сопротивлением.
  • Из меди. Для стали и меди характерно хорошее сцепление, поэтому такие электроды обладают высокой прочностью и хорошо контактируют с другими материалами. Имеют отличную электропроводимость и долгий срок службы, обеспечивающийся за счёт низкой электрохимической активности металлов.

Схемы заземления дома

Одним из основных элементов, необходимых для обеспечения электрической и пожарной безопасности объекта, является защитное заземление, поэтому закономерно, что грамотное технологическое производство такой системы – первостепенная задача. Добиться необходимого результата решения этой задачи невозможно без правильного выбора схематического варианта соединения и подключения заземляющих элементов.

Помните! Каждый элемент, при помощи которого реализуется защитное заземление, имеет схематическое обозначение. Для того чтобы выбрать оптимальный вариант схематического обоснования подключения такой системы, человеку нужно разбираться как в буквенных, графических, так и в цветовых чертежных обозначениях.

Чаще на практике применяются два вида подключения — схемы TN-C-S и TT. Отличия в проектировании схем:

  1. Схема TN-C-S. При организации защитного заземления объекта по данной схеме, предусмотрена реализация следующих моментов:
    • роль защитного и нулевого (рабочего) проводника выполняет один кабель (PEN);
    • локализация — участок электросети от трансформатора и до ГЗШ (главной заземляющей шины). Уже на ГЗШ провод PEN разделяется на рабочий нулевой (N) и защитный (PE).Цифрой 1 на картинке обозначено заземление источника, а цифрой 2 – заземляемый объект (дом).

    • Схема TT. Прежде чем применить эту схему, необходимо аргументировать отказ от использования TN-C-S системы. Предусмотрена обязательная реализация нормативных требований, установленных к системе TT, а именно:
    • производится независимое подключение элементов, исключается соединение с нейтралью трансформатора;
    • заземлитель всех корпусов электрооборудования дома не зависит от аналогичного элемента источника питания;
    • в электрической проводке дома обязательно применяется УЗО (устройство защитного отключения).

Цифрой 1 на картинке обозначено заземление источника; цифрой 2 — дом, а 3 — это само устройство заземления дома.

В связи со значительным затруднением производства заземляющих работ по схеме TT, большинство объектов заземляются посредством TN-C-S системы.

Заземление — важный элемент обеспечения пожарной безопасности здания и электробезопасности его жильцов. Начинать работы по его созданию, руководствуясь лишь общими понятиями определения, что такое защитное заземление, не стоит. Нужно изучить теоретические и практические особенности устройства электрозащитной системы, разбираться в производстве расчетов ее параметров и уметь произвести измерение величины ее сопротивления после монтажа. При отсутствии навыков и необходимого оборудования следует доверить выполнение такой работы профильным специалистам.

Особенности электролитического заземления

Данная разновидность заземления эффективно используется в местах песчаной, вечномерзлой и каменистой почвы. Также в условиях, где грунт имеет высокое удельное сопротивление и требуется специальное оборудование для установки обычных электродов.

Немного о достоинствах электролитического заземления

Полушаровый заземлитель

На самом деле, как и штыревое заземление, электролитическое обладает некоторыми весьма важными достоинствами.

  1. Этот тип электродов обеспечивает минимальное сопротивление грунту, примерно до 10 раз меньше в отличие от традиционных заземлителей.
  2. Выполняется из специальной смеси, предшествующей образованию коррозии.
  3. Имеет длительный срок службы. Если стальной электрод заземления служит около 5-7 лет, то электролитический порядка 50.
  4. Не требует большой глубины для установки, достаточно вмонтировать заземлитель на полметра.

Принцип работы электрода

Главным элементом данного типа заземления считается труба Г-образной формы. Она вбивается на определенную глубину, которая предварительно заполняется смесью из минеральных солей. Вещество впитывает воду из окружающего грунта, создавая при этом выщелачивание, вследствие чего образуется электролит. Затем этот же электрод проникает в почву, увеличивая ее токопроводимые свойства. Удельное сопротивление снижается, и как следствие уменьшается промерзание почвенного слоя.

Часто после окончания изготовления проекта, происходит подтаивание грунта рядом с строением. К сожалению, это очень опасно для фундамента и грозит осадкой дома. Поэтому электрики рекомендуют при проектировании электролитического заземления учитывать фактор повреждения зданий, а, следовательно, требуют отдалятся от мест застройки.

В условиях сильного промерзания почвы принято использовать горизонтальные электроды. Они являются доступными и простыми в монтаже. Однако, при любой возможности работать буровым оборудованием, лучше всего установить вертикальный заземлитель.

Заземлитель с омедненным наконечником

Как проверить электрод?

Заземлители электролитического типа требуют регулярной проверки на работоспособность. Проводят его обслуживание однажды в 2-3 года

Здесь важно определить превратилась ли смесь в электролит. Если электролит образовался, проводят замену смеси, то есть добавляют новый состав солей

Аналогично проверяется каждый электрод, если он не один. Таким образом, установка будет служить еще несколько лет.

Основные требования

Большая часть профильных рекомендаций и правил регламентирует конструкцию и размещение такой составной части заземляющей системы. Требования, которым должен соответствовать искусственный заземлитель:

  1. Для засушливых территорий существует отдельная технология производства заземления с применением железобетонных конструкций.
  2. Искусственный заземлитель не подлежит окраске. Объясняется тем, что любое окрашивание выполняет роль изолятора. Изоляция будет препятствовать протеканию тока в почву. Искусственный заземлитель должен иметь естественный цвет.
  3. Окраске подлежат сварочные швы (соединения проводников). Окрашиваются битумной краской, предотвращается преждевременное разрушение соединительных элементов.
  4. Нестандартные (уменьшенные) значения электродов применяются исключительно при установке временных электроустановок.

Оптимальным выбором материала заземлителя считается круглая арматура. Обоснование такого приоритета:

  1. Минимальный расход металла. Следовательно, снижается себестоимость заземляющего устройства.
  2. Коррозионная стойкость у такого электрода значительно выше, чем у его аналогов.
  3. Легкость монтажа.

Помимо профильных требований, существует рекомендационная стандартизация параметров (размеров) материала, используемого для создания искусственного заземляющего элемента.

Для каких целей применяется защитное заземление

Главная цель данного устройства – защитить человека от поражения электротоком. Такое возможно, когда человек становится частью замкнутой цепи, и по его телу будет проходить опасный для жизни ток. Кроме выполнения функции защиты человеческой жизни, заземление также предохраняет электрические приборы от перенапряжения. В результате этого заземлители делятся на две группы — защитное и рабочее.

Целевое назначение защитного устройства состоит в том, чтобы стать гарантией электробезопасности для населения. Вследствие чего электрооборудование и электросети становятся стойкими к влиянию токов и высоких напряжений. Вдобавок происходит предохранение людей, которые в результате работы обслуживают такое оборудование. Повышение напряжения может быть вследствие нарушения эксплуатации или повреждения приборов, а также из-за разряда молнии.

Также конструкция применяется для ликвидации помех и электромагнитных волн от приборов, находящихся рядом в рабочем состоянии.

Это указывается в инструкции для данного оборудования, даже дается схема соединения с заземлителем.В зависимости от назначения существуют вспомогательные виды заземления: измерительное, радио, инструментальное, контрольное.

Защитное заземление

Виды заземлителей: тонкости их использования

Каждый вид электрода имеет конкретное назначение, которое мы и рассмотрим:

Глубинный заземлитель — конструкция, предусматривающая сложный монтаж, но имеющая массу преимуществ. Из особенностей такого вида электродов, можно выделить, что их монтаж занимает значительно меньше места, чем стандартный контур заземления. Доказана эффективность этого проводника в местах с наименьшим удельным сопротивлением почвы. На сегодняшний день, в нормативных актах прописывается, что можно применять подобный элемент в подвале и цокольном этаже.

Искусственный заземлитель — очередная конструкция из металла, предназначенная специально для устройства заземления дома. Зачастую такие материалы изготавливают на производстве и реализуют в специализированных торговых точках. Сюда включаются оцинкованные изделия или материалы, покрытые медным опылением. Отличным примером искусственного электрода выступает модульное заземление.
Естественный заземлитель — это металлическая конструкция, выступающая с любым внешним видом. Обычно в качестве электродов используются конструкции из металла или стали

Важно соблюдение структуры материала. Идеально, если на нем нет рифлений и засечек, так как эти нюансы увеличивают показатель сопротивления

Такой вид заземлителя обязательно соединяется с общей системой защиты не менее, чем двумя проводниками.

Для домашних условий идеальным решением остается использование вертикальных заземлителей, чего не скажешь о промышленном направлении. Здесь, наоборот целесообразна установка анодного электрода. Его применяют для защиты трубопроводов и подземных сооружений. По сути материал достаточно надёжный и устойчив к воздействию коррозии.

Назначение и устройство защитного заземления

Устанавливается такой тип заземляющего устройства для защиты человека от поражения электрическим током при замыкании электрической цепи вследствие различных причин. Самая распространенная причина поражения током — короткое замыкание фазы на нетоковедущие элементы электроустановки.

Функциональный тип применяется чаще для защиты производственных объектов. Посредством рабочих заземляющих устройств реализуется надежная эксплуатация оборудования электроустановки. Эффективность как рабочего, так и защитного устройства напрямую зависит от правильного выбора конфигурации заземляющих элементов и четкого производства электромонтажа.

Основным элементом системы выступает контур заземления. Он состоит из металлических заземлителей (электродов). Функциональность всей системы зависит от возможности этих заземлителей рассеивать ток. Монтировать заземляющие элементы необходимо с учетом множества факторов, напрямую влияющих на основной показатель эффективности заземлителей, — значение их сопротивления.

Монтаж устройства защитного заземления востребован практически повсеместно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector