Как рассчитать мощность радиатора отопления — делаем расчет мощности правильно
Содержание:
- Обратите внимание, что в статье будут использоваться следующие обозначения и понятия:
- Расчет для прибора
- Поиск соответствующих данных
- Динамические параметры теплоносителя
- Влияние способов подключения и места установки на теплоотдачу радиаторов
- Учёт особенностей помещения
- Простой расчет теплопотерь зданий.
- О трубах в системе отопления
- Подбор нагревательного элемента
- Начальные условия примера
- Особенности
- Биметаллические радиаторы особенности
- Расчет мощности отопительного котла
Обратите внимание, что в статье будут использоваться следующие обозначения и понятия:
ИПУ — индивидуальный прибор учета;
ОДПУ — общедомовой (коллективный) прибор учета, установленный на многоквартирном доме;
Жилое помещение в многоквартирном доме — квартира;
Нежилое помещение в многоквартирном доме — это различные магазины, офисы, машино-места, подземные гаражи и автостоянки и так далее, расположенные в многоквартирном доме.
Методики и примеры расчета, представленные ниже, дают пояснение о порядке расчета размера платы за отопление для жилых помещений (квартир), расположенных в многоквартирных домах, имеющих централизованные системы для подачи тепловой энергии — централизованную систему теплоснабжения.
Расчет для прибора
- Как выполнить расчет тепловой мощности радиаторов отопления при известном количестве секций?
Все просто: количество секций умножается на тепловой поток от одной секции. Этот параметр обычно можно найти на сайте производителя.
Если вас привлекла необычно низкая цена радиаторов неизвестного производителя — тоже не беда. В этом случае можно ориентироваться на следующие усредненные значения:
Тип радиатора | Тепловой поток на секцию стандартного (500 мм по центрам ниппелей) размера |
Чугунный | 140-160 |
Биметаллический | 180-190 |
Алюминиевый | 190 — 200 |
На фото — алюминиевый радиатор, рекордсмен по теплоотдаче на одну секцию.
Данные для панельных радиаторов Керми с сайта производителя.
Выполняя расчет тепловой мощности радиатора своими руками, учтите одну тонкость: производители обычно приводят данные для перепада температур между водой в батарее и воздухом в отапливаемом помещении в 70С. Она достигается, например, при комнатной температуре +20 и температуре радиатора +90.
Уменьшение дельты ведет к пропорциональному уменьшению тепловой мощности; так, при температурах теплоносителя и воздуха 60 и 25С соответственно мощность прибора уменьшится ровно вдвое.
Температурный график отопления. Большую часть отопительного сезона поступающая в батареи смесь (темно-синяя линия на графике) холоднее 90С.
Давайте обратимся к нашему примеру и выясним, сколько чугунных секций может обеспечить тепловую мощность в 6,6 КВт в идеальных условиях — при нагретом до 90С теплоносителе и комнатной температуре в +20. 6600/160=41 (с округлением) секция. Очевидно, что батареи такого размера придется разнести как минимум по двум стоякам.
При большом количестве секций используйте диагональное двухстороннее подключение к подводке. Тогда батарея будет равномерно прогрета по всей длине.
Особый случай
- Системы отопления частных домов и гаражей нередко оборудуют самодельными приборами из соединенных перемычками труб — регистрами. Как подсчитать тепловую мощность стального регистра известных размеров?
Трубчатый стальной радиатор, или регистр.
Для одной секции (одной горизонтальной трубы) она вычисляется по формуле Q=Pi*D*L*K*Dt.
В ней:
- Q -мощность. Результат будет получен в ваттах;
- Pi — число «пи», его округленно берут равным 3,14;
- D — наружный диаметр трубы в метрах;
- L — длина секции (опять-таки в метрах);
- K — коэффициент, соответствующий теплопроводности металла (у стали он равен 11,63);
- Dt — разность температур между воздухом и водой в регистре.
При расчете мощности многосекционного регистра первая снизу секция рассчитывается по этой формуле, а для последующих, поскольку они будут находиться в восходящем теплом потоке (что влияет на Dt), результат умножается на 0,9.
Четырехсекционный регистр. Верхние секции попадают в восходящий теплый поток от нижней.
Приведу пример расчета. Одна секция диаметром 108 мм и длиной 3 метра при комнатной температуре +25 и температуре теплоносителя +70 будет отдавать 3,14*0,108*3*11,63*(70-25)=532 ватта. Четырехсекционный регистр из таких же секций отдаст 523+(532*0,9*3)=1968 ватт.
https://youtube.com/watch?v=mVNWfHKN-Pw
Поиск соответствующих данных
Что касается поиска оптимальных справочных данных, то почти все сайты производителей комплектующих отопительных систем предоставляют эту информацию. В тех случаях, когда подходящие значения не были найдены, существует специальная система подбора диаметров. Эта методика основана на вычислениях, а не на усредненных закономерностях, построенных на обработке данных об огромном количестве отопительных систем. Расчет теплоносителя по сечению трубы разработан сантехниками с практическим опытом проведения монтажных работ, и применяется для обустройства небольших контуров внутри жилищ.
В подавляющем большинстве случаев отопительные котлы оснащаются двумя размерами подающих и обратных патрубков: ¾ и ½ дюйма. Этот размер принимается за основу для выполнения разводки до первого разветвления. В дальнейшем каждое новое разветвление служит поводом для уменьшения диаметра на одну позицию. Этот метод позволяет провести расчет сечения труб в квартире. Речь идет о небольших системах в 3-8 радиаторов. Обычно такие схемы состоят из двух-трех линий с 1-2 батареями. Подобным образом можно рассчитывать и небольшие частные коттеджи. При наличии двух и более этажей приходится использовать справочные данные.
Динамические параметры теплоносителя
Переходим к следующему этапу расчетов – анализ потребления теплоносителя. В большинстве случаев система отопления квартиры отличается от иных систем – это связанно с количеством отопительных панелей и протяженностью трубопровода. Давление используется в качестве дополнительной “движущей силы” потока вертикально по системе.
В частных одно- и многоэтажных домах, старых панельных многоквартирных домах применяются системы отопления с высоким давлением, что позволяет транспортировать теплоотдающее вещество на все участки разветвлённой, многокольцевой системы отопления и поднимать воду на всю высоту (до 14-ого этажа) здания.
Напротив, обычная 2- или 3- комнатная квартира с автономным отоплением не имеет такого разнообразия колец и ветвей системы, она включает не более трех контуров.
А значит и транспортировка теплоносителя происходит с помощью естественного процесса протекания воды. Но также можно использовать циркуляционные насосы, нагрев обеспечивается газовым/электрическим котлом.
Рекомендуем применять циркуляционный насос для отопления помещений более 100 м2. Монтировать насос можно как до так и после котла, но обычно его ставят на “обратку” – меньше температура носителя, меньше завоздушенность, больше срок эксплуатации насоса
Специалисты в сфере проектирования и монтажа систем отопления определяют два основных подхода в плане расчёта объёма теплоносителя:
- По фактической емкости системы. Суммируются все без исключения объёмы полостей, где будет протекать поток горячей воды: сумма отдельных участков труб, секций радиаторов и т.д. Но это достаточно трудоёмкий вариант.
- По мощности котла. Здесь мнения специалистов разошлись очень сильно, одни говорят 10, другие 15 литров на единицу мощности котла.
С прагматичной точки зрения нужно учитывать, тот факт что наверное система отопления будет не только подавать горячую воду для комнаты, но и нагревать воду для ванной/душа, умывальника, раковины и сушилки, а может и для гидромассажа или джакузи. Этот вариант попроще.
Поэтому в данном случае рекомендуем установить 13,5 литров на единицу мощности. Умножив этот число на мощность котла (8,08 кВт) получаем расчётный объём водяной массы – 109,08 л.
Вычисляемая скорость теплоносителя в системе является именно тем параметром, который позволяет подбирать определённый диаметр трубы для системы отопления.
Она высчитывается по следующей формуле:
V = (0,86*W*k)/t-to,
где:
- W – мощность котла;
- t – температура подаваемой воды;
- to – температура воды в обратном контуре;
- k – кпд котла (0,95 для газового котла).
Подставив в формулу расчетные данные, имеем: (0.86 * 8080* 0.95)/80-60 = 6601,36/20=330кг/ч. Таким образом за один час в системе перемещается 330 л теплоносителя (воды), а ёмкость системы около 110 л.
Влияние способов подключения и места установки на теплоотдачу радиаторов
При расчете фактической мощности радиаторов следует знать, что теплоотдача приборов также зависит и от способа размещения. Фактическая мощность, полученная в результате расчетов, показывает какое количество тепла радиатор отдаст при расчетных параметрах теплоносителя, грамотной схеме подключения, сбалансированной системе отопления, а также при установке открыто на стене или под окном без использования декоративных экранов.
Как правило, оконные проемы являются строительными элементами с максимальными потерями тепла вне зависимости от количества камер и прочих энергоэффективных показателей. Поэтому радиаторы отопления принято размещать в пространстве под окном. В таком случае радиатор, нагревая воздух в зоне установки, создает некую душирующую завесу вдоль окна, направленную вверх помещения и позволяющую отсекать поток холодного воздуха. При смешивании холодного воздуха с теплыми потоками от радиатора возникают конвективные потоки в помещении, которые позволяют увеличить скорость прогрева.
Рекомендуется устанавливать радиаторы шириной не меньше половины ширины оконного проема.
Еще одним требованием увеличить эффективность обогрева комнаты является подбор габарита радиатора относительно ширины оконного проема. Длину радиатора рекомендуется подбирать не мене половины ширины оконного проема. В противном случае будет велика вероятность образования холодных зон в непосредственной близости к окну и будет заметно снижена конвективная составляющая обогрева помещения.
Если в здании присутствует большое количество угловых комнат, то следует размещать такое количество приборов отопления, равное количеству наружных ограждающих конструкций.
Например, для помещения 1-го этажа рассматриваемого в качестве примера жилого дома площадью 8, 12 м2 следует предусматривать по 2 радиатора. Один располагается под оконными конструкциями, второй или у противоположного окна или у глухой стены, но в максимальном приближении к углу помещения. Таким образом, будет соблюден максимально равномерный прогрев всех комнат.
Если система отопления дома проектируется по вертикальной схеме, то прокладку стояков для подводки к радиаторам угловых комнат следует производить непосредственно в угловых стыках стен. Это позволит дополнительно прогревать наружные строительные конструкции и предотвратить отсыревание и порчу отделочных материалов в углах.
В случае установки радиаторов под окнами с использованием дополнительных декоративных элементов (экранов, широких подоконников) или установки в нишах для расчета фактической мощности отопительных приборов необходимо пользоваться следующими поправочными коэффициентами:
- Узкий подоконник не перекрывает радиатор по глубине, но лицевая панель прибора отопления закрыта декоративным экраном (расстояние между стеной и экраном не менее 250 мм) – Ккорр=0,9.
- Широкий подоконник полностью перекрывает глубину радиатора, декоративный экран закрывает лицевую панель (расстояние между стеной и экраном не менее 250 мм), но в верхней части оставлена щель, равная 100 мм по вертикали – Ккорр=1,12.
- Широкий подоконник полностью перекрывает радиатор по глубине, дополнительные декоративные конструкции отсутствуют – Ккорр=1,05.
Из рассмотренных выше вариантов установки приборов отопления видно, что для того чтобы уровень конвекции не был снижен следует оставлять воздушные зазоры со всех сторон приборов отопления. Минимальными расстояниями от финишного уровня напольного покрытия и от подоконника до прибора отопления должно составлять не менее 100 мм, а зазор между стеной и задней поверхностью радиатора не менее 30 мм.
Различают одностороннее подключение радиаторов к системам отопления и разностороннее, когда трубопроводы подводят к прибору с противоположных сторон. Односторонний способ является наиболее экономичным и удобным с точки зрения дальнейшей эксплуатации приборов отопления. Подключение радиаторов с разных сторон немного увеличивает их теплоотдачу, но на практике этот способ используют при установке отопительных приборов более 15-ти секций или при подключении нескольких радиаторов в связке.
Теплосъем от радиаторов зависит также и от точки подвода подающего трубопровода. При подключении по схеме «сверху-вниз», когда горячая вода подводится к верхнему патрубку, а обратка к нижнему, теплопередача от радиатора увеличивается. При подключении «снизу-вверх» тепловой поток снижается, при этом прогрев радиаторов осуществляется неравномерно, а типоразмер приборов должен быть значительно увеличен для достижения расчетной мощности.
Учёт особенностей помещения
Технические характеристики различных видов радиаторов неодинаковы. Специалисты-теплотехники рекомендуют использовать радиаторы из чугуна в частных домах, для квартиры более подходят биметаллические или алюминиевые изделия.
Расчёт размера секций учитывает не только квадратуру, но и вероятные тепловые потери, происходящие через окна, двери, стены, перекрытия и полы, а также по вентиляционным каналам. Для каждого вида непроизводительных расходов тепла применяются свои коэффициенты, обозначаемые буквой Q.
В расчёт тепловых потерь необходимо включать такие параметры:
- Разница температур снаружи и внутри помещения, обозначаемая как DT.
- Площадь дверей и окон и других подобных конструкций – S.
- Толщина перегородок или стен – V.
- Величина теплопроводности стен, зависящая от характера материала и применяемых утепляющих материалов – Y.
Соотношение для расчёта выглядит таким образом:
Q = S x DT / R слоя,
где R = V : Y.
Все просчитанные коэффициенты нужно суммировать, а при наличии вентиляционных шахт, полученный показатель увеличивается на величину до 40%.
В зависимости от расположения комнат в пространстве, вводятся дополнительные коэффициенты, для вертикалей, обращённых к северу, северо-востоку и северо-западу. Он составляет 10%, а для обращённых на юго-восток и юго-запад – 5%. Для южного направления поправка не применяется. Для углового помещения с двумя стенами, выходящими наружу, добавочный коэффициент принимаемся равным 5% .
Если высота стены составляет более 4-х метров, вводится добавочный коэффициент 2%. Снижение параметров тепловых потерь можно получить, утепляя потолок со стороны чердака и кровельный пирог.
Простой расчет теплопотерь зданий.
Ниже приведен довольно простой расчет теплопотерь зданий, который, тем не менее, поможет достаточно точно определить мощность, требуемую для отопления Вашего склада, торгового центра или другого аналогичного здания. Это даст возможность еще на стадии проектирования предварительно оценить стоимость отопительного оборудования и последующие затраты на отопление, и при необходимости скорректировать проект.
Куда уходит тепло? Тепло уходит через стены, пол, кровлю и окна. Кроме того тепло теряется при вентиляции помещений. Для вычисление теплопотерь через ограждающие конструкции используют формулу:
Q = S * T / R,
где
Q — теплопотери, Вт
S — площадь конструкции, м2
T — разница температур между внутренним и наружным воздухом, °C
R — значение теплового сопротивления конструкции, м2•°C/Вт
Схема расчета такая — рассчитываем теплопотери отдельных элементов, суммируем и добавляем потери тепла при вентиляции. Все.
Предположим мы хотим рассчитать потери тепла для объекта, изображенного на рисунке. Высота здания 5…6 м, ширина – 20 м, длинна – 40м, и тридцать окон размеров 1,5 х 1,4 метра. Температура в помещении 20 °С, внешняя температура -20 °С.
Считаем площади ограждающих конструкций:
пол:
20 м * 40 м = 800 м2
кровля:
20,2 м * 40 м = 808 м2
окна:
1,5 м * 1,4 м * 30 шт = 63 м2
стены:
(20 м + 40 м + 20 м + 40м) * 5 м = 600 м2 + 20 м2 (учет скатной кровли) = 620 м2 – 63 м2 (окна) = 557 м2
Теперь посмотрим тепловое сопротивление используемых материалов.
Значение теплового сопротивления можно взять из таблицы тепловых сопротивлений или вычислить исходя из значения коэффициента теплопроводности по формуле:
R = d / ?
где
R – тепловое сопротивление, (м2*К)/Вт
? – коэффициент теплопроводности материала, Вт/(м2*К)
d – толщина материала, м
Значение коэффициентов теплопроводности для разных материалов можно посмотреть здесь.
пол:
бетонная стяжка 10 см и минеральная вата плотностью 150 кг/м3. толщиной 10 см.
R (бетон) = 0.1 / 1,75 = 0,057 (м2*К)/Вт
R (минвата) = 0.1 / 0,037 = 2,7 (м2*К)/Вт
R (пола) = R (бетон) + R (минвата) = 0,057 + 2,7 = 2,76 (м2*К)/Вт
кровля:
кровельные сэндвич панели из минеральной ваты толщиной 15 см
R (кровля) = 0.15 / 0,037 = 4,05 (м2*К)/Вт
окна:
значение теплового сопротивления окон зависит от вида используемого стеклопакета R (окна) = 0,40 (м2*К)/Вт для однокамерного стекловакета 4–16–4 при ?T = 40 °С
стены:
стеновые сэндвич панели из минеральной ваты толщиной 15 см R (стены) = 0.15 / 0,037 = 4,05 (м2*К)/Вт
Посчитаем тепловые потери:
Q (пол) = 800 м2 * 20 °С / 2,76 (м2*К)/Вт = 5797 Вт = 5,8 кВт
Q (кровля) = 808 м2 * 40 °С / 4,05 (м2*К)/Вт = 7980 Вт = 8,0 кВт
Q (окна) = 63 м2 * 40 °С / 0,40 (м2*К)/Вт = 6300 Вт = 6,3 кВт
Q (стены) = 557 м2 * 40 °С / 4,05 (м2*К)/Вт = 5500 Вт = 5,5 кВт
Получаем, что суммарные теплопотери через ограждающие конструкции составят:
Q (общая) = 5,8 + 8,0 + 6,3 + 5,5 = 25,6 кВт / ч
Теперь о потерях на вентиляцию.
Для нагрева 1 м3 воздуха с температуры — 20 °С до + 20 °С потребуется 15,5 Вт.
Q(1 м3 воздуха) = 1,4 * 1,0 * 40 / 3,6 = 15,5 Вт, здесь 1,4 – плотность воздуха (кг/м3), 1,0 – удельная теплоёмкость воздуха (кДж/(кг К)), 3,6 – коэффициент перевода в ватты.
Осталось определиться с количеством необходимого воздуха. Считается, что при нормальном дыхании человеку нужно 7 м3 воздуха в час. Если Вы используете здание как склад и на нем работают 40 человек, то вам нужно нагревать 7 м3 * 40 чел = 280 м3 воздуха в час, на это потребуется 280 м3 * 15,5 Вт = 4340 Вт = 4,3 кВт. А если у Вас будет супермаркет и в среднем на территории находится 400 человек, то нагрев воздуха потребует 43 кВт.
Итоговый результат:
Для отопления предложенного здания необходима система отопления порядка 30 кВт/ч, и система вентиляции производительностью 3000 м3 /ч с нагревателем мощность 45 кВт/ч.
О трубах в системе отопления
Делая расчет отопления в квартире нельзя пренебрегать выбором труб. Нельзя категорично утверждать, что некоторые лучше, а остальные хуже.
Важно! Несмотря на то, что пластиковые трубы отодвинули привычные для нас трубы металлические на второй план, даже их нельзя использовать в сочетании со всеми типами котлов. Например, для котлов, работающих на твердом топливе, подходят исключительно металлические трубы
Дело в том, что в данном случае температура теплоносителя нередко может превышать 100 градусов, а этого пластиковые трубы, увы, выдержать неспособны. Тем не менее, по остальным критериям такие трубы существенно превосходят все свои устаревшие аналоги. К таким критериям относится:
Например, для котлов, работающих на твердом топливе, подходят исключительно металлические трубы. Дело в том, что в данном случае температура теплоносителя нередко может превышать 100 градусов, а этого пластиковые трубы, увы, выдержать неспособны. Тем не менее, по остальным критериям такие трубы существенно превосходят все свои устаревшие аналоги. К таким критериям относится:
- Удобство монтажа
- Подверженность коррозии
- Надежность
- Вес
- Долговечность.
Постойте, скажите вы, ведь трубы из меди также способны на это! Да, это так, но их стоимость на порядок выше, так что не каждый способен позволить себе их установку. Вместе с тем, медь способна выдерживать до 200 градусов.
Ну а теперь непосредственно о необходимом количестве труб. На самом деле оно зависит только от схемы разводки.
Подбор нагревательного элемента
Котлы условно делятся на несколько групп в зависимости от типа используемого топлива:
- электрический;
- жидкотопливный;
- газовый;
- твердотопливный;
- комбинированный.
Среди всех предложенных моделей, наибольшей популярностью обладают аппараты, функционирующие на газе. Именно этот вид топлива является сравнительно выгодным и доступным. Кроме этого, оборудование подобного плана не требует особых знаний и навыков для его обслуживания, а КПД таких узлов довольно высокий, чем не могут похвастаться другие идентичные по функциональности агрегаты. Но вместе с тем газовые котлы уместны лишь в том случае, если ваш дом подключен к центрованной газовой магистрали.
Определение мощности котла
Перед тем, как рассчитать отопление, нужно определить пропускную способность нагревателя, поскольку именно от этого показателя зависит эффективность функционирования тепловой установки. Так, сверхмощный агрегат будет потреблять много топливных ресурсов, тогда как маломощный аппарат не сможет в полной мере обеспечить качественного обогрева помещения. Именно по этой причине расчёт системы отопления – это важный и ответственный процесс.
Можно не вдаваться в сложные формулы вычисления производительности котла, а попросту воспользоваться предложенной ниже таблицей. В ней указана площадь обогреваемого сооружения и мощность нагревателя, который сможет создать в нем полноценные температурные условия для проживания.
Общая площадь жилья, нуждающегося в обогреве, м2 |
Необходимая производительность нагревательного элемента, кВт |
60-200 |
Не выше 25 |
200-300 |
25-35 |
300-600 |
35-60 |
600-1200 |
60-100 |
Начальные условия примера
Для более конкретного пояснения всех деталей гидравлического просчёта возьмем конкретный пример обычного жилищного помещения. В наличии имеем классическую 2-комнатную квартиру панельного дома, общей площадью 65,54 м2, которая включает две комнаты, кухню, раздельные туалет и ванная, двойной коридор, спаренный балкон.
После сдачи в эксплуатацию получили следующую информацию относительно готовности квартиры. Описываемая квартира включает обработанные шпаклевкой и грунтом стены из монолитных железо-бетонных конструкций, окна из профиля с двух камерными стеклами, тырсо-прессованные межкомнатные двери, керамическая плитка на полу санузла.
Типичный панельный 9-этажный дом на четыре подъезда. На каждом этаже по 3 квартиры: одна 2-комнатная и две 3-комнатных. Квартира расположена на пятом этаже
Кроме того, представленное жильё уже оснащено медной проводкой, распределителями и отдельным щитком, газовой плитой, ванной, умывальником, унитазом, полотенцесушителем, мойкой.
И самое главное в жилых комнатах, ванной и кухне уже имеются алюминиевые отопительные радиаторы. Вопрос относительно труб и котла остаётся открытым.
Особенности
Расчет радиаторов отопления производится в соответствии с теплопотерями конкретного помещения, а также в зависимости от площади этого помещения. Казалось бы, ничего сложного в создании проверенной схемы отопления с контурами труб и циркулирующим по ним носителю нет, однако правильные теплотехнические расчеты основываются на требованиях СНиП. Такие расчеты выполняются специалистами, а сама процедура считается чрезвычайно сложной. Однако с допустимым упрощением выполнить процедуры можно и самостоятельно. Кроме площади обогреваемого помещения, в расчетах учитываются некоторые нюансы.
Не зря для расчета радиаторов специалисты применяют различные методики. Основная их особенность – учет максимальных теплопотерь помещения. Затем уже рассчитывается нужное количество отопительных приборов, которые компенсируют эти потери.
Понятно, что чем проще будет используемый метод, тем более точными будут итоговые результаты. К тому же для нестандартных помещений специалисты применяют специальные коэффициенты.
Специалисты в своих проектах нередко используют специальные приборы. Например, с точным определением фактических теплопотерь справится тепловизор. На основании данных, полученных по прибору, рассчитывается количество радиаторов, которые с точностью компенсируют потери.
Такой метод расчета покажет наиболее холодные точки квартиры, места, где тепло будет уходить активнее всего. Такие точки часто возникают из-за строительного брака, например, допущенного рабочими, или из-за некачественных строительных материалов.
Результаты проводимых расчетов тесно связаны с существующими видами радиаторов отопления. Для получения наилучшего результата в расчетах необходимо знание параметров планируемых к использованию устройств.
Современный ассортимент включает такие виды радиаторов:
- стальные;
- чугунные;
- алюминиевые;
- биметаллические.
Для проведения расчетов нужны такие параметры устройств, как мощность и форма радиатора, материал изготовления. Самая простая схема подразумевает размещение радиаторов под каждым окном, имеющимся в комнате. Поэтому рассчитываемое количество радиаторов обычно равно числу оконных проемов.
Биметаллические радиаторы особенности
Биметаллические радиаторы становятся сегодня все популярней. Это достойная замена безнадежно устаревшему «чугуну». Приставка «би» означает «два», т.е. при изготовлении радиаторов используются два металла — сталь и алюминий. Представляют собой алюминиевый каркас, внутри которого находится стальная труба. Такое сочетание является само по себе оптимальным. Алюминий гарантирует высокую теплопроводность, а сталь — длительный срок эксплуатации и способность с легкостью выдерживать перепады давления теплосети.
Совместить, казалось бы несовместимое, стало возможно благодаря особой технологии производства. Биметаллические радиаторы изготавливаются методом точечной сварки или литья под давлением.
Плюсы биметаллических радиаторов отопления
Если говорить о преимуществах, то у биметаллических радиаторов их много. Рассмотрим основные из них.
- длительный срок «жизни». Высокое качество сборки и надежный «союз» двух металлов превращает радиаторы в «долгожителей». Они способны исправно служить до 50 лет;
- прочность. Стальная сердцевина не боится скачков давления, свойственным нашим отопительным системам;
- высокая теплоотдача. Благодаря наличию алюминиевого корпуса биметаллический радиатор быстро нагревает помещение. В некоторых моделях данный показатель достигает 190 Вт;
- устойчивость к образованию ржавчины. С теплоносителем контактирует только сталь, а значит, биметаллическому радиатору не страшна коррозия. Это качество становится особенно ценным при проведении сезонных чисток и сбрасывании воды;
- приятная «внешность». Биметаллический радиатор внешне намного привлекательнее своего чугунного предшественника. Скрывать его от посторонних глаз занавесками или специальными экранами нет необходимости. Кроме того, радиаторы отличаются по цветовому оформлению и дизайну. Вы можете выбрать то, что нравится именно вам;
- небольшой вес. Значительно упрощает процесс монтажа. Теперь установка батареи не потребует больших затрат сил и времени;
- компактный размер. Биметаллические радиаторы ценятся за небольшой размер. Они достаточно компактны и легко вписываются в любой интерьер.
Расчет мощности отопительного котла
Котел в составе системы отопления предназначен для компенсации теплопотерь здания. А также, в случае двухконтурной системы или при оснащении котла бойлером косвенного нагрева, для согревания воды на гигиенические нужды.
Одноконтурный котел производит только нагрев теплоносителя для отопительной системы
Для определения мощности котла отопления необходимо рассчитать затраты тепловой энергии дома через фасадные стены и на нагрев сменяемой воздушной атмосферы внутренних помещений.
Требуются данные по теплопотерям в киловатт-часах за сутки – в случае условного дома, обсчитанного в качестве примера, это:
271,512 + 45,76 = 317,272 кВт·ч,
Где: 271,512 – суточные потери тепла внешними стенами; 45,76 – суточные теплопотери на нагрев приточного воздуха.
Соответственно, необходимая отопительная мощность котла будет:
317,272 : 24 (часа) = 13,22 кВт
Однако такой котел окажется под постоянно высокой нагрузкой, снижающей его срок службы. И в особенно морозные дни расчетной мощности котла будет недостаточно, поскольку при высоком перепаде температур между комнатной и уличной атмосферами резко возрастут теплопотери здания.
Поэтому выбирать котел по усредненному расчету затрат тепловой энергии не стоит – он с сильными морозами может и не справиться.
Рациональным будет увеличить требуемую мощность котлового оборудования на 20%:
13,22 · 0,2 + 13,22 = 15,86 кВт
Для вычисления требуемой мощности второго контура котла, греющего воду для мытья посуды, купания и т.п., нужно разделить месячное потребление тепла «канализационных» теплопотерь на число дней в месяце и на 24 часа:
493,82 : 30 : 24 = 0,68 кВт
По итогам расчетов оптимальная мощность котла для коттеджа-примера равна 15,86 кВт для отопительного контура и 0,68 кВт для нагревательного контура.